Skip to main content

Advertisement

Log in

Biosynthesis of ZnO Nanosheets Decorated with Pd Nanoparticles and Their Application for Electrochemical Investigation of Ethanol

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Hierarchical ZnO microflowers with sheet thickness of ≈ 23 nm were prepared in the presence of Cystoceira baccata algae extract. Pd nanoparticles with an average size of 4.9 nm were embedded on the surface of these nanosheets in the presence of Cystoceira baccata algae extract. The structure of ZnO@Pd was characterized by XRD, FESEM, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy methods. To investigate the possible application of the synthesized nanoparticles, the electrooxidation of ethanol on the surface of ZnO@Pd modified carbon paste electrode in alkaline media was studied using cyclic voltammetry. The electrode showed high catalytic activity for ethanol oxidation. It also showed high selectivity toward ethanol in comparison to other alcohols. Chronoamperometric measurements showed that this electrode could be used as a probe for determination of ethanol in a relatively wide linear range (180–500 mM) with a low detection limit (60 μM).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Wang, H. Wang, Y. Fan, Techno-economic challenges of fuel cell commercialization. Engineering 4, 352–360 (2018)

    Article  CAS  Google Scholar 

  2. W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells: Fundamentals (Technology, Applications, Wiley, Chichester, U.K., 2003)

    Google Scholar 

  3. C. Lamy, J.M. Leger, Fuel cells: application to the electric vehicle. J. Phys. IV 4, C1 253–282 (1994)

  4. K.I. Ozoemena, Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications. RSC Adv. 6, 89523–89550 (2016)

    Article  CAS  Google Scholar 

  5. Y. Wang, S. Zou, W.B. Cai, Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials. Catalysts 5, 1507–1534 (2015)

    Article  CAS  Google Scholar 

  6. Z.X. Liang, T.S. Zhao, J.B. Xu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54, 2203–2208 (2009)

    Article  CAS  Google Scholar 

  7. H. Zhang, W. Zhou, Y. Du, P. Yang, C. Wang, J. Xu, Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2/ITO electrode under UV illumination. Int. J. Hydrogen Energy 35, 13290–13297 (2010)

    Article  CAS  Google Scholar 

  8. A.K. Ipadeola1, R. Barik, S.C. Ray, K.I. Ozoemena, Bimetallic Pd/SnO2 nanoparticles on metal organic framework (MOF)-derived carbon as electrocatalysts for ethanol oxidation. Electrocatalysis 10, 366–380 (2019)

  9. J. Kim, S. Park, Electrochemical oxidation of ethanol at thermally prepared RuO2-modified electrodes in alkaline media. J. Electrochem. Soc. 146, 1075–1080 (1999)

    Article  CAS  Google Scholar 

  10. B. Cermenek, B. Genorio, T. Winter, S. Wolf, J.G. Connell, M. Roschger, I. Letofsky-Papst, N. Kienzl, B. Bitschnau, V. Hacker, Alkaline ethanol oxidation reaction on carbon supported ternary pdnibi nanocatalyst using modified instant reduction synthesis method. Electrocatlaysis 11, 203–214 (2020)

    Article  CAS  Google Scholar 

  11. N. Xaba, R.M. Modibedi, M.K. Mathe, L.E. Khotseng, Pd, PdSn, PdBi, and PdBiSn nanostructured thin films for the electro-oxidation of ethanol in alkaline media. Electrocatalysis 10, 332–341 (2019)

    Article  CAS  Google Scholar 

  12. F.B. Xiong, D. Sisler, Determination of low-level water content in ethanol by fiber-optic evanescent absorption sensor. Opt. Commun. 283, 1326–1330 (2010)

    Article  CAS  Google Scholar 

  13. S.K. Srivastava, R. Verma, B.D. Gupta, Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol. Sens. Actuators B Chem. 153, 194–198 (2011)

    Article  CAS  Google Scholar 

  14. F.K. Coradin, G.R.C. Possetti, R.C. Kamikawachi, M. Muller, J.L. Fabris, Etched fiber bragg gratings sensors for water-e thanol mixtures: a comparative study. J. Microw. Optoelectron. Electromagn. Appl. 9, 131–143 (2010)

    Article  Google Scholar 

  15. G.R.C. Possetti, L.C. Cocco, C.I. Yamamoto, L.V.R. de Arruda, R. Falate, M. Muller, J.L. Fabris, Application of a long-period fibre grating-based transducer in the fuel industry. Meas. Sci. Technol. 20, 034012 (2009)

    Article  Google Scholar 

  16. B. Kim, T. Yamamoto, Y. Kim, In-line measurement of water content in ethanol using a PVA-coated quartz crystal microbalance. Sensors 14, 1564–1575 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. H. Lidén, A. Vijayakumar, L. Gorton, G. Marko-Varga, Rapid alcohol determination in plasma and urine by column liquid chromatography with biosensor detection. J. Pharm. Biomed. Anal. 17, 1111–1128 (1998)

    Article  PubMed  Google Scholar 

  18. M.K.K. Figueiredo, R.P.B. Costa-Felix, L.E. Maggi, A.V. Alvarenga, G.A. Romeiro, Biofuel ethanol adulteration detection using an ultrasonic measurement method. Fuel 91, 209–212 (2012)

    Article  CAS  Google Scholar 

  19. D.P. de Queiroz, A. de Oliveira Florentino, J.C. Catarina, J.H.D. da Silva, A. Riul, J.A. Giacometti, The use of an e-tongue for discriminating ethanol/water mixtures and determination of their water content. Sens. Actuators B Chem. 230, 566–570 (2016)

  20. Y.M. Lee, C.M. Huang, H.W. Chen, H.W. Yang, Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sens. Actuators Phys. 189, 307–312 (2013)

    Article  CAS  Google Scholar 

  21. L. Bueno, T.R.L.C. Paixao, A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water. Talanta 87, 210–215 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. K.I. Ozoemena, S. Musa, R. Modise, A.K. Ipadeola, L. Gaolatlhe, S. Peteni, G. Kabongo, Fuel cell-based breath-alcohol sensors: innovation-hungry old electrochemistry. Curr. Opin. Electrochem. 10, 82–87 (2018)

    Article  CAS  Google Scholar 

  23. M. Rai, A. Yadav, A. Cade, Current trends in phytosynthesis of metal nanoparticles. Crit. Rev. Biotechnol. 28, 277–284 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Biosynthesis of metal and metal oxide nanoparticles. Chem. BioEng. Rev. 3, 55–67 (2016)

    Google Scholar 

  25. O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, P.A. Luque, Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 1147, 1–6 (2017)

    Article  CAS  Google Scholar 

  26. J. Yu, D. Xu, H. Nan, C. Wang, L. Kun, D.F. Chi, Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater. Lett. 166, 110–112 (2016)

    Article  CAS  Google Scholar 

  27. S. Ahmed, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J. Photochem. Photobiol. 166, 272–284 (2017)

  28. X. Zhang, Y. Qu, W. Shen, J. Wang, H. Li, Z. Zhang, S. Li, J. Zhou, Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf. Physicochem. Eng. Asp. 497, 280–285 (2016)

    Article  CAS  Google Scholar 

  29. M.T. Ale, J.D. Mikkelsen, A.S. Meyer, Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 9, 2106–2130 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E.J. Kim, S.Y. Park, J.Y. Lee, J.H.Y. Park, Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10, 1–11 (2010)

    Article  Google Scholar 

  31. Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 1–3, 1–7 (2013)

  32. E. Tavakolian, J. Tashkhourian, Z. Razmi, H. Kazemi, M. Hosseini-Sarvari, Ethanol electrooxidation at carbon paste electrode modified with Pd-ZnO nanoparticles. Sens. Actuators B: Chem. 230, 87–93 (2016)

    Article  CAS  Google Scholar 

  33. G.B. Kauffman, J.H. Tsai, L.P. Eody, L. Johannes, D. Parker, Tetraamminepalladium(II) tetrachloropalladate(II) and trans-dichlorodiamminepalladium(II). Inorganic Synthesis 8, 235–238 (1966)

    Google Scholar 

  34. P. Basnet, T. Inakhunbi Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B. 183, 201–221 (2018)

  35. P.K. Harold, E.A. Leroy, X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials (Wiley, New York, USA, 1974)

    Google Scholar 

  36. N.A. Nadhirah Mohamad, N. Afiqah Arham, J. Jai, A. Hadi, Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Adv. Mater. Res. 832, 350–355 (2014)

  37. H.F. Cui, J.S. Ye, W.D. Zhang, J. Wang, F.S. Sheu, Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode. J. Electroanal. Chem. 577, 295–302 (2005)

    Article  CAS  Google Scholar 

  38. X. Yang, F. Zhang, Y. Hu, D. Chen, Z. He, L. Xiong, Gold nanoparticals doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for voltammetric determination of guaiacol in bamboo juice. Int. J. Electrochem. Sci. 9, 5061–5072 (2014)

    Google Scholar 

  39. M. Grden, A. Czerwinski, EQCM studies on Pd–Ni alloy oxidation in basic solution. J. Solid State Electrochem. 12, 375–385 (2008)

    Article  CAS  Google Scholar 

  40. Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 54, 2203–2208 (2009)

    Article  CAS  Google Scholar 

  41. S.W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27, 6059 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. J. Muzart, Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59, 5789–5816 (2003)

    Article  CAS  Google Scholar 

  43. R. Shekhar, M.A. Barteau, R.V. Plank, J.M. Vohs, Adsorption and reaction of aldehydes on Pd surfaces. J. Phys. Chem. B 101, 7939–7951 (1997)

    Article  CAS  Google Scholar 

  44. D. Astruc, Organometallic Chemistry and Catalysis (Springer, New York, USA, 2007)

    Google Scholar 

  45. B. Tao, J. Zhang, S. Hui, L. Wan, An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode. Sens. Actuators. B 142, 298–303 (2009)

    Article  CAS  Google Scholar 

  46. J. Shi, P. Ci, F. Wang, H. Peng, P. Yang, L. Wang, Q. Wang, P.K. Chu, Pd/Ni/Si-microchannel-plate-based amperometric sensor for ethanol detection. Electrochim. Acta 56, 4197–4202 (2011)

    Article  CAS  Google Scholar 

  47. E.T. Hayes, B.K. Bellingham, H.B. Mark, A. Galal, An amperometric aqueous ethanol sensor based on the electrocatalytic oxidation at a cobalt-nickel oxide electrode. Electrochim. Acta 41, 337–344 (1996)

    Article  Google Scholar 

  48. L. Wu, M. McIntosh, X. Zhang, H. Ju, Amperometric sensor for ethanol based on one-step electropolymerization of thionine–carbon nanofiber nanocomposite containing alcohol oxidase. Talanta 74, 387–392 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Persian Gulf University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Hashemi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrjo, F., Hashemi, M., Solati, Z. et al. Biosynthesis of ZnO Nanosheets Decorated with Pd Nanoparticles and Their Application for Electrochemical Investigation of Ethanol. Electrocatalysis 12, 272–282 (2021). https://doi.org/10.1007/s12678-021-00650-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00650-1

Keywords

Navigation