Skip to main content
Log in

Preparation and Assessment of a Polysafranin/Multiwall Carbon Nanotube-Nafion Hybrid Film–Modified Carbon Paste Electrode and Its Performance as an Easy Sensing Probe for H2O2 and Cu2+

  • Original Research Articles
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A polysafranin/multiwall carbon nanotube-Nafion hybrid film was prepared by electropolymerizing safranin on the surface of a MWCNT-Naf/CPE. The modified electrode was evaluated as an electrochemical sensor for hydrogen peroxide (H2O2) and Cu2+ in the presence of H2O2, in 0.1 M Tris buffer (pH 6.0) using cyclic and differential pulse voltammetric methods. The electrode showed a pair of well-defined and quasi-reversible redox peaks with formal potential (E°΄) = 0.290 ± 0.005 V versus Ag/AgCl corresponding to the polysafranin redox couples. The effects of the experimental variables on the electrode behavior regarding polymerization conditions, electrolyte pH, and MWCNT concentration were investigated to obtain optimum experimental conditions. The investigation of differential pulse voltammetric results showed that the polysafranin film at the modified electrode surface acts as an effective catalyst for H2O2 r and Cu2+ reduction in the presence of H2O2. Under optimum conditions, the modified electrode exhibited a linear dynamic range of 4.5–23.0 mM and a sensitivity of 17.4 ± 0.4 μA mM-1 cm‑2 toward H2O2 with a detection limit of 0.6 mM (3Sbl/m). In the presence of 17.0 mM H2O2, the electrode showed a linear response range of 1.0–80.0 μM and a sensitivity of 7.6 ± 0.2 μA μM‑1 cm‑2, with a detection limit of 0.1 μM (3Sbl/m) for Cu2+. In the next step, using differential pulse voltammetry, the response of the electrode to Cu2+ was studied in the presence of interfering metal ions that can promote Fenton’s reaction. The results showed that Fe2+, Co2+, and Al3+ produce interference at more than 5-, 2- and 10-fold ratios ([cation]/[Cu2+]) respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.S. Manikandan, B. Sidhureddy, A. Thiruppathi, A. Chen, Sensitive electrochemical detection of caffeic acid in wine based on fluorine-doped graphene oxide. Sensors 19(7), 1604 (2019)

    CAS  Google Scholar 

  2. R. Zhang, W. Chen Biosens, Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Bioelectron. 89(Pt 1), 249–268 (2017)

    CAS  Google Scholar 

  3. A. Manivel, S. Anandan, J. Solid State Electrochem. 15, 153 (2010)

    Google Scholar 

  4. H.W. Siao, S.M. Chen, K.C. Lin, J. Solid State Electrochem. 15, 1121 (2010)

    Google Scholar 

  5. R. Herrero, R. Guidelli, Adsorption and reduction kinetics of safranine T in self-assembled phospholipid monolayers deposited on mercury. J. Electroanal. Chem. 425(1-2), 87–95 (1997)

    CAS  Google Scholar 

  6. R. Pauliukaite, M.E. Ghica, M.M. Barsan, C.M.A. Brett, Phenazines and polyphenazines in electrochemical sensors and biosensors. Anal. Lett. 43(10-11), 1588–1608 (2010)

    CAS  Google Scholar 

  7. Y. Li, Y. Li, Y. Yang, A new amperometric H2O2 biosensor based on nanocomposite films of chitosan–MWNTs, hemoglobin, and silver nanoparticles. J. Solid State Electrochem. 16(3), 1133–1140 (2012)

    CAS  Google Scholar 

  8. A. Afraz, A.A. Rafati, A. Hajian, Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode. J. Solid State Electrochem. 17(7), 2017–2025 (2013)

    CAS  Google Scholar 

  9. J.V. Da Silva, D.M. Pimentel, D.E.P. Souto, R. de Cassia Silva Luz, F.S. Damos, J. Solid State Electrochem. 17, 2795 (2013)

    Google Scholar 

  10. S. Nalini, S. Nandini, S. Shanmugam, S.E. Neelagund, J.S. Melo, G.S. Suresh, J. Solid State Electrochem. 18, 685 (2013)

    Google Scholar 

  11. M.S. Randjelović, M.Z. Momčilović, D. Enke, V. Mirčeski, Electrochemistry of hydrogen peroxide reduction reaction on carbon paste electrodes modified by Ag- and Pt-supported carbon microspheres. J. Solid State Electrochem. 23(4), 1257–1267 (2019)

    Google Scholar 

  12. X. Liu, L. Luo, Y. Ding, Y. Xu, F. Li, J. Solid State Electrochem. 15, 447 (2010)

    Google Scholar 

  13. J. Wang, L. Cui, H. Yin, J. Dong, S. Ai, J. Solid State Electrochem. 16, 1545 (2011)

    Google Scholar 

  14. L. Wang, H. Zhu, H. Hou, Z. Zhang, X. Xio, Y. Song, J. Solid State Electrochem. 16, 1693 (2011)

    Google Scholar 

  15. R. Wu, X. Chen, J. Hu, J. Solid State Electrochem. 16, 1975 (2011)

    Google Scholar 

  16. Y. Wang, H. Zhang, D. Yao, J. Pu, Y. Zhang, X. Gao, Y. Sun, J. Solid State Electrochem. 17, 881 (2012)

    Google Scholar 

  17. P. Prabhu, R.S. Babu, S.S. Narayanan, J. Solid State Electrochem. 18, 883 (2013)

    Google Scholar 

  18. W.L. Hao, H.X. Li, C.Y. Shen, S.L. Liu, J. Solid State Electrochem. 18, 1041 (2013)

    Google Scholar 

  19. B.P. Crulhas, N.P. Ramos, G.R. Castro, V.A. Pedrosa, Detection of hydrogen peroxide releasing from prostate cancer cell using a biosensor. J. Solid State Electrochem. 20(9), 2427–2433 (2016)

    CAS  Google Scholar 

  20. K.G. Nikolaev, V. Maybeck, E. Neumann, Y.E. Ermolenko, A. Offenhausser, Y.G. Mourzina, J. Solid State Electrochem. 22, 1023 (2017)

    Google Scholar 

  21. M.I. Prodromidis, C.D. Stalikas, P.T. Veltsistas, M.I. Karayannis, Spectrophotometric kinetic determination of copper(II) trace amounts based on its catalytic effect on the reaction of the reduced 2,6-dichlorophenolindophenol and hydrogen peroxide. Talanta 41(10), 1645–1649 (1994)

    PubMed  CAS  Google Scholar 

  22. Y.Y. Petrova, M.K. Beklemishev, N.A. Bazhanova, A.A. Druzhinin, I.F. Dolmanova, Determination of copper by its catalytic effect on the oxidation of hydroquinone by hydrogen peroxide on supports. J. Anal. Chem. 55(3), 284–290 (2000)

    CAS  Google Scholar 

  23. A. Yeşilkaya, A. Yeĝin, G. Yücel, Y. Alicigüzel, T.A. Aksu, Continuous monitoring of hydroperoxide-induced peroxidation in human erythrocytes by low-level chemiluminescence. Int. J. Clin. Lab Res. 26(1), 60–68 (1996)

    PubMed  Google Scholar 

  24. A.N. Baga, G.R.A. Johnson, N.B.R.A. Nazhat, Saadalla-Nazhat, Anal. Chim. Acta 204, 349–353 (1988)

    CAS  Google Scholar 

  25. K. Helrach, Official Methods of Analysis, 15th edn. (Arlington, AOAC, 1990), Sec. 965.33

  26. D. Jin, K. Sakthivel, S. Gandhi, B.T. Huy, Y.I. Lee, An improved non-enzymatic hydrogen peroxide sensor based on europium functionalized inorganic hybrid material—evaluation of optical and electrochemical properties. Sensor Actuat. B-Chem. 237, 81–89 (2016)

    CAS  Google Scholar 

  27. Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202(2), 384–389 (1992)

    PubMed  CAS  Google Scholar 

  28. K. Ma, F.R. van de Voort, A.A. Ismail, H. Zhuo, B. Cheng, Monitoring peroxide value in fatliquor manufacture by Fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 77(6), 681–685 (2000)

    CAS  Google Scholar 

  29. H. Ruttinger, A. Radschuweit, Determination of peroxides by capillary zone electrophoresis with amperometric detection. J. Chromatogr. A 868(1), 127–134 (2000)

    PubMed  CAS  Google Scholar 

  30. C.W. Zhang, Oloman, J. Appl. Electrochem. 35(10), 945–953 (2005)

    CAS  Google Scholar 

  31. P. Westbroek, J. Hakuzimana, E. Gasana, P. Lombaert, P. Kiekens, Voltammetric detection of hydrogen peroxide in teeth whitening gels. Sensors Actuators B Chem. 124(2), 317–322 (2007)

    CAS  Google Scholar 

  32. I. Švancara, K. Vytřas, J. Barek, J. Zima, Carbon Paste Electrodes in Modern Electroanalysis. Crit. Rev. Anal. Chem. 31(4), 311–345 (2001)

    Google Scholar 

  33. B. Uslu, S.A. Ozkan, Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett. 40(5), 817–853 (2007)

    CAS  Google Scholar 

  34. L. Zou, Y. Li, W. Zhao, S. Zhang, B. Ye, J. Solid State Electrochem. 16, 505 (2011)

    Google Scholar 

  35. Y.Q. Tian, H.Q. Luo, N.B. Li, J. Solid State Electrochem. 16, 529 (2011)

    Google Scholar 

  36. R. Ansari, A.F. Delavar, A. Aliakbar, A. Mohammad-Khan, J. Solid State Electrochem. 16, 869 (2011)

    Google Scholar 

  37. H. Shen, J.E. Mark, C.J. Seliskar, H.B. Mark Jr., W.R. Heineman, Stripping voltammetry of copper and lead using gold electrodes modified with self-assembled monolayers. J. Solid State Electrochem. 1(3), 241–247 (1997)

    CAS  Google Scholar 

  38. R. Pauliukaite, M.E. Ghica, M. Barsan, C.M.A. Brett, Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors. J. Solid State Electrochem. 11(7), 899–908 (2007)

    CAS  Google Scholar 

  39. G. Inzelt, E. Csahók, Electrochemical Quartz Crystal Microbalance Studies of the Formation and Redox Behavior of Poly(Neutral Red) Electrodes. Electroanalysis 11(10-11), 744–748 (1999)

    CAS  Google Scholar 

  40. G. Cirić-Marjanović, N.V. Blinova, M. Trchová, J. Stejskal, J. Phys. Chem. B 111, 2188 (2007)

    PubMed  Google Scholar 

  41. R. Pauliukaite, A. Selskiene, A. Malinauskas, C.M.A. Brett, Electrosynthesis and characterisation of poly(safranine T) electroactive polymer films. Thin Solid Films 517(18), 5435–5441 (2009)

    CAS  Google Scholar 

  42. A. Taher, F. Majidi, A. Mohadesi, Electrochemical and electrocatalytic behaviors of Safranin O/Nafion film deposited on the glassy carbon electrode. Russ. J. Electrochem. 45(10), 1156–1161 (2009)

    CAS  Google Scholar 

  43. M.M. Barsan, M.E. Ghica, C.M.A. Brett, Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Anal. Chim. Acta 881, 1–23 (2015)

    PubMed  CAS  Google Scholar 

  44. A.A. Karyakin, E.E. Karyakina, H.L. Schmidt, Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 11(3), 149–155 (1999)

    CAS  Google Scholar 

  45. A.A. Karyakin, E.E. Karyakina, W. Schumann, H.L. Schmidt, Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11(8), 553–557 (1999)

    CAS  Google Scholar 

  46. W.J. Albery, A.R. Mount, J. Chem. Soc. Faraday Trans. 185, 1189 (1989)

    Google Scholar 

  47. S. Shahrokhian, M. Ghalkhani, Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine–nafion ion-pair as an electron mediator. Electrochim. Acta 51(13), 2599–2606 (2006)

    CAS  Google Scholar 

  48. J.S. Easow, T. Selvaraju, Unzipped catalytic activity of copper in realizing bimetallic Ag@Cu nanowires as a better amperometric H2O2 sensor. Electrochim. Acta 112, 648–654 (2013)

    CAS  Google Scholar 

  49. J. Zhou, Y. Zhao, J. Bao, D. Huo, H. Fa, X. Shen, C. Hou, One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS 2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor. Electrochim. Acta 250, 152–158 (2017)

    CAS  Google Scholar 

  50. K. Kim, K. Lee, S. So, S. Cho, M. Lee, K. You, J. Moon, T. Song, ECS J Solid State Sci. Technol. 7, 91 (2018)

    Google Scholar 

  51. A.N. Pham, G. Xing, C.J. Miller, T.D. Waite, Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 301, 54–64 (2013)

    CAS  Google Scholar 

  52. B. Feier, I. Băjan, I. Fizeșan, D. Floner, C. Cristea, F. Geneste, R. Săndulescu, Int. J. Electrochem. Sci. 10, 121 (2015)

    Google Scholar 

  53. X. Dai, R.G. Compton, Determination of copper in the presence of various amounts of arsenic with L-cysteine modified gold electrodes. Electroanalysis 17(20), 1835–1840 (2005)

    CAS  Google Scholar 

  54. I. Cesarino, G. Marino, J. do Rosario Matos, E.T.G. Cavalheiro, Talanta 75, 15 (2008)

    PubMed  CAS  Google Scholar 

  55. M. Nasiri-Majd, M.A. Taher, H. Fazelirad, Preparation and application of a simple electrochemical sensor for the determination of copper in some real and standard samples. Ionics 22(2), 289–296 (2016)

    CAS  Google Scholar 

  56. H.B. Noh, K.S. Lee, P. Chandra, M.S. Won, Y.B. Shim, Electrochim. Acta 61 (2012)

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Research Council of Persian Gulf University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hashemnia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayahpour, M., Hashemnia, S. & Mokhtari, Z. Preparation and Assessment of a Polysafranin/Multiwall Carbon Nanotube-Nafion Hybrid Film–Modified Carbon Paste Electrode and Its Performance as an Easy Sensing Probe for H2O2 and Cu2+. Electrocatalysis 12, 91–100 (2021). https://doi.org/10.1007/s12678-020-00629-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00629-4

Keywords

Navigation