Synergistically Enhanced Electrocatalytic Stability of Pt Catalyst Supported by Doped Porous Carbon Nanostructure for Oxygen Reduction Reaction

A Publisher Correction to this article was published on 08 February 2021

This article has been updated

Abstract

In proton exchange membrane fuel cells, the utilization of supporting materials for Pt-based catalysts is an effective approach to improve the oxygen reduction reaction (ORR) performance. In this study, a doped porous carbon (DPC) as a support was prepared with polyaniline as the main carbon source, iron nitrate nonahydrate as a metal doping source, and dicyandiamide as a nitrogen doping source in the presence of 20 nm silica bead as a template. The carbon support showed fairly high specific surface area (~ 740 m2 g−1), well-defined pore structure, and a proper nitrogen doping (~ 4.9 at.%). The Pt cathode catalyst deposited on the doped porous carbon using an NaBH4 reduction method (Pt/DPC) exhibited significantly improved ORR performance in the half and single cells, compared with the conventional carbon-supported Pt catalyst. The superior ORR stability of Pt/DPC may be as a result of the particular interaction between Pt catalyst and DPC support as a doped carbon.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Change history

References

  1. 1.

    S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 208, 96–119 (2012)

    CAS  Google Scholar 

  2. 2.

    J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 184(1), 104–119 (2008)

    CAS  Google Scholar 

  3. 3.

    C. Chen, C. Luo, X. Zhang, Y. Li, J. Huang, B. Chen, J. Chen, Hierarchical porous carbon materials prepared by direct carbonization of Al-PCP as a Pt-catalyst support for the oxygen reduction reaction. New J. Chem. 41(15), 7432–7437 (2017)

    CAS  Google Scholar 

  4. 4.

    A. Brouzgou, S.Q. Song, P. Tsiakaras, Appl. Catal. B Environ. 127, 371 (2012)

    CAS  Google Scholar 

  5. 5.

    W. Zhang, P. Sherrell, A.I. Minett, J.M. Razal, J. Chen, Energy Environ. Sci. 3, 1286 (2010)

    CAS  Google Scholar 

  6. 6.

    H. Nan, D. Dang, X.L. Tian, J. Mater. Chem. A 6, 6065 (2018)

    CAS  Google Scholar 

  7. 7.

    I. Kone, A. Xie, Y. Tang, Y. Chen, J. Liu, Y. Chen, Y. Sun, X. Yang, P. Wan, ACS Appl. Mater. Interfaces 9, 20963 (2017)

    CAS  PubMed  Google Scholar 

  8. 8.

    X.L. Tian, Y.Y. Xu, W. Zhang, T. Wu, B.Y. Xia, X. Wang, ACS Energy Lett. 2, 2035 (2017)

    CAS  Google Scholar 

  9. 9.

    X.X. Wang, Z.H. Tan, M. Zeng, J.N. Wang, Sci. Rep. 4, 4437 (2014)

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B 56, 9 (2005)

    CAS  Google Scholar 

  11. 11.

    C. Wang, N.M. Markovic, V.R. Stamenkovic, ACS Catal. 2, 891 (2012)

    CAS  Google Scholar 

  12. 12.

    T. Kaito, H. Tanaka, H. Mitsumoto, S. Sugawara, K. Shinohara, H. Ariga, H. Uehara, S. Takakusagi, K. Asakura, J. Phys. Chem. C 120, 11519 (2016)

    CAS  Google Scholar 

  13. 13.

    C. Cui, L. Gan, H. Li, S. Yu, M. Heggen, P. Strasser, Nano Lett. 12, 5885 (2012)

    CAS  PubMed  Google Scholar 

  14. 14.

    F.H.B. Lima, J.F.R. De Castro, L.G.R.A. Santos, E.A. Ticianelli, J. Power Sources 190, 293 (2009)

    CAS  Google Scholar 

  15. 15.

    S. Choi, R. Choi, S.W. Han, J.T. Park, Chem. Commun. 46, 4950 (2010)

    CAS  Google Scholar 

  16. 16.

    C. Dong Young, J. Samuel Woojoo, Y. Gabin, K. Soon Gu, S. Dong Yun, S. Pilseon, Y. Ji Mun, S. Heejong, C. Young-Hoon, K. Hyunjoong, M. Bongjin Simon, L. Kung-Seung, L. Nam-Suk, Y. Sung Jong, L. Dong-Hee, K. Kisuk, S. Yung-Eun, H. Taeghwan, J. Am. Chem. Soc. 137, 15478 (2015)

    Google Scholar 

  17. 17.

    Z. Cui, H. Chen, W. Zhou, M. Zhao, F.J. Disalvo, Chem. Mater. 27, 7538 (2015)

    CAS  Google Scholar 

  18. 18.

    Y. Chung, C. Dong Young, N. Jung, H.-Y. Park, Y.-E. Sung, S.J. Yoo, Int. J. Hydrog. Energy 39, 14751 (2014)

    CAS  Google Scholar 

  19. 19.

    Y. Cho, T. Jeon, S.J. Yoo, K. Lee, M. Ahn, O.-H. Kim, Y.-H. Cho, J.W. Lim, N. Jung, W. Yoon, H. Choe, Y. Sung, Electrochim. Acta 59, 264 (2012)

    CAS  Google Scholar 

  20. 20.

    M. Oezaslan, F. Hasche, P. Strasser, J. Phys. Chem. Lett. 4, 3273 (2013)

    CAS  Google Scholar 

  21. 21.

    X. Li, J. Liu, W. He, Q. Huang, H. Yang, Influence of the composition of core–shell Au–Pt nanoparticle electrocatalysts for the oxygen reduction reaction. J. Colloid Interface Sci. 344, 132 (2010)

    CAS  PubMed  Google Scholar 

  22. 22.

    Y. Wu, S. Liao, Z. Liang, L. Yang, R. Wang, J. Power Sources 194, 805 (2009)

    CAS  Google Scholar 

  23. 23.

    S.N. Stamatin, M. Borghei, R. Dhiman, M.S. Andersen, V. Ruiz, E. Kauppinen, E.M. Skou, Appl. Catal. B Environ. 162, 289 (2015)

    CAS  Google Scholar 

  24. 24.

    X. Tang, Z. Xie, Q. Huang, G. Chen, M. Hou, B. Yi, Nanoscale 7, 7971 (2015)

    CAS  PubMed  Google Scholar 

  25. 25.

    G. Kim, M. Lee, J.Y. Lee, S. Bae, D.H. Song, I.K. Song, J. Yi, Electrochim. Acta 193, 137 (2016)

    CAS  Google Scholar 

  26. 26.

    N. Jha, A.L.M. Reddy, M.M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, Int. J. Hydrog. Energy 33, 427 (2008)

    CAS  Google Scholar 

  27. 27.

    A.L. Dicks, J. Power Sources 156, 128 (2006)

    CAS  Google Scholar 

  28. 28.

    V. Di Noto, E. Negro, Electrochim. Acta 55, 7564 (2010)

    Google Scholar 

  29. 29.

    V. Di Noto, E. Negro, S. Polizzi, P. Riello, P. Atanassov, Appl. Catal. B Environ. 111–112, 185 (2012)

    Google Scholar 

  30. 30.

    V. Di Noto, E. Negro, K. Vezzù, L. Toniolo, G. Pace, Electrochim. Acta 57, 257 (2011)

    Google Scholar 

  31. 31.

    V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G.A. Rizzi, A. Martucci, G. Granozzi, A. Gennaro, Carbon 95, 949 (2015)

    CAS  Google Scholar 

  32. 32.

    M. Favaro, L. Ferrighi, G. Fazio, L. Colazzo, C. Di Valentin, C. Durante, F. Sedona, A. Gennaro, S. Agnoli, G. Granozzi, ACS Catal. 5, 129 (2014)

    Google Scholar 

  33. 33.

    J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin, P. Strasser, R. Yang, J. Mater. Chem. A 1, 9889 (2013)

    CAS  Google Scholar 

  34. 34.

    G. Wu, D. Li, C. Dai, D. Wang, N. Li, Langmuir 24, 3566 (2008)

    CAS  PubMed  Google Scholar 

  35. 35.

    X. Ning, Y. Li, B. Dong, H. Wang, H. Yu, F. Peng, Y. Yang, J. Catal. 348, 100 (2017)

    CAS  Google Scholar 

  36. 36.

    X. Ning, H. Yu, F. Peng, H. Wang, J. Catal. 325, 136 (2015)

    CAS  Google Scholar 

  37. 37.

    Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao, R.O. Hayre, Energy Environ. Sci. 3, 1437 (2010)

    CAS  Google Scholar 

  38. 38.

    J. Zhu, A. Holmen, D. Chen, ChemCatChem 5, 378 (2013)

    CAS  Google Scholar 

  39. 39.

    D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, O.Y. Podyacheva, F.S. Hage, Q.M. Ramasse, U. Bangert, L.G. Bulusheva, ACS Catal. 6, 3442 (2016)

    CAS  Google Scholar 

  40. 40.

    W. Chen, J. Ji, X. Duan, G. Qian, P. Li, X. Zhou, D. Chen, W. Yuan, Chem. Commun. 50, 2142 (2014)

    CAS  Google Scholar 

  41. 41.

    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Science 315, 493 (2007)

    CAS  PubMed  Google Scholar 

  42. 42.

    T. Holme, Y. Zhou, R. Pasquarelli, R.O. Hayre, Phys. Chem. Chem. Phys. 12, 9461 (2010)

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT (NRF-2017M1A2A2086648).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyung-Won Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1221 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwon, SH., Lee, SG., Han, SB. et al. Synergistically Enhanced Electrocatalytic Stability of Pt Catalyst Supported by Doped Porous Carbon Nanostructure for Oxygen Reduction Reaction. Electrocatalysis 11, 497–504 (2020). https://doi.org/10.1007/s12678-020-00609-8

Download citation

Keywords

  • Doped porous carbon
  • Pt
  • Supported catalyst
  • Oxygen reduction reaction