Skip to main content
Log in

Confining Iron Carbide Growth in Porous Carbon to Improve the Electrocatalytic Performance for Oxygen Reduction Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The Fe and N co-functionalized catalyst is controllably synthesized by three-step strategy. Prussian blue (PB) and poly 2,6-diaminopyridine (PDAP) are preferentially selected to synthesize a core-shell structure attributed to their advantageous properties. Under pyrolysis process, carbonized PDAP serves as a block layer to prevent Fe-based nanoparticles from aggregation and increase the content of N. By adjusting the thickness of shell and pyrolysis temperature, the catalytic activity can be optimized. The optimized catalyst exhibits good catalytic performance in terms of onset and half-wave potentials, limiting-diffusion current density and durability. Moreover, the relationship between structure and effect is analyzed. It is found that the optimal catalyst presents excellently active for ORR stemming from a comprehensive effect, containing higher density of active site, higher surface area, porosity structure, and good conductivity of catalyst.

A 3D graphene-like catalyst has been controllably synthesized using core-shell and pyrolysis strategy. The morphology and activity can be tailored by adjusting the thickness of shell and pyrolysis temperature. Importantly, the optimized catalyst shows excellently active for ORR in both alkaline and acidic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.J. Chen, S.F. Ji, Y.G. Wang, J.C. Dong, W.X. Chen, Z. Li, R.G. Shen, L.R. Zheng, Z.B. Zhuang, D.S. Wang, Y.D. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56(24), 6937–6941 (2017)

    Article  CAS  Google Scholar 

  2. Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44(8), 2060–2086 (2015)

    Article  CAS  Google Scholar 

  3. B.L. Chen, R. Li, G.P. Ma, X.L. Gou, Y.Q. Zhu, Y.D. Xia, Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 7(48), 20674–20684 (2015)

    Article  CAS  Google Scholar 

  4. L. An, W. Huang, N. Zhang, X. Chen, D. Xia, A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction. J. Mater. Chem. A 2, 62–65 (2014)

    Article  CAS  Google Scholar 

  5. Y. Hu, J.O. Jensen, W. Zhang, L.N. Cleemann, W. Xing, N.J. Bjerrum, Q.F. Li, Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts. Angew. Chem. Int. Ed. 53(14), 3675–3679 (2014)

    Article  CAS  Google Scholar 

  6. G.Y. Zhong, H.J. Wang, H. Yu, F. Peng, Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J. Power Sources 286, 495–503 (2015)

    Article  CAS  Google Scholar 

  7. M.L. Xiao, J.B. Zhu, L.G. Feng, C.P. Liu, W. Xing, Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 27(15), 2521–2527 (2015)

    Article  CAS  Google Scholar 

  8. X.J. Fan, Z.W. Peng, R.Q. Ye, H.Q. Zhou, X. Guo, M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 9(7), 7407–7418 (2015)

    Article  CAS  Google Scholar 

  9. R. Liu, C.V. Malotki, L. Arnold, N. Koshino, H. Higashimura, M. Baumgarten, K. Mullen, Triangular trinuclear metal-N4 complexes with high electrocatalytic activity for oxygen reduction. J. Am. Chem. Soc. 133(27), 10372–10375 (2011)

    Article  CAS  Google Scholar 

  10. T. Cao, D.S. Wang, J.T. Zhang, C.B. Cao, Y.D. Li, Bamboo-like nitrogen-doped carbon nanotubes with co nanoparticles encapsulated at the tips: Uniform and large-scale synthesis and high-performance electrocatalysts for oxygen reduction. Chem. Eur. J. 21(40), 14022–14029 (2015)

    Article  CAS  Google Scholar 

  11. K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)

    Article  CAS  Google Scholar 

  12. P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7(1), 442–450 (2014)

    Article  CAS  Google Scholar 

  13. L.F. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z.X. Shen, J.Y. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936–7942 (2012)

    Article  CAS  Google Scholar 

  14. Z.H. Xia, L. An, P.K. Chen, D.G. Xia, Non-Pt nanostructured catalysts for oxygen reduction reaction: synthesis, catalytic activity and its key factors. Adv. Energy Mater. 6(17), 1600458 (2016)

    Article  CAS  Google Scholar 

  15. G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028), 443–447 (2011)

    Article  CAS  Google Scholar 

  16. Q.M. Yu, J.M. Xu, C.Y. Wan, C.X. Wu, L. Guan, Porous cobalt-nitrogen-doped hollow graphene spheres as a superior electrocatalyst for enhanced oxygen reduction in both alkaline and acidic solutions. J. Mater. Chem. A 3(32), 16419–16423 (2015)

    Article  CAS  Google Scholar 

  17. J.H. Kim, Y.J. Sa, H.Y. Jeong, S.H. Joo, Roles of Fe-Nx and Fe-Fe3C@C species in Fe-N/C electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(11), 9567–9575 (2017)

    Article  CAS  Google Scholar 

  18. W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 137(4), 1436–1439 (2015)

    Article  CAS  Google Scholar 

  19. R. Wang, J.S. Li, S.C. Cai, Y. Zeng, H.N. Zhang, H.P. Cai, H.L. Tang, Facile synthesis of Fe3C@graphene hybrid nanorods as an efficient and robust catalyst for oxygen reduction reaction. Chempluschem 81(7), 646–651 (2016)

    Article  CAS  Google Scholar 

  20. Z.Y. Wu, X.X. Xu, B.C. Hu, H.W. Liang, Y. Lin, L.F. Chen, S.H. Yu, Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 54(28), 8179–8183 (2015)

    Article  CAS  Google Scholar 

  21. H.D. Mai, K. Rafiq, H. Yoo, Nano metal-organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications. Chem. Eur. J. 23(24), 5631–5651 (2017)

    Article  CAS  Google Scholar 

  22. Y.V. Kaneti, J. Tang, R.R. Salunkhe, X.C. Jiang, A. Yu, K.C.W. Wu, Y. Yamauchi, Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017)

    Article  CAS  Google Scholar 

  23. Y.C. Pei, Z.Y. Qi, X.L. Li, R.V. Maligal-Ganesh, T.W. Goh, C.X. Xiao, T.Y. Wang, W.Y. Huang, Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. J. Mater. Chem. A 5(13), 6186–6192 (2017)

    Article  CAS  Google Scholar 

  24. Y. Wang, X.T. Chen, Q.P. Lin, A.G. Kong, Q.-G. Zhai, S.L. Xie, P.Y. Feng, Nanoporous carbon derived from a functionalized metal-organic framework as a highly efficient oxygen reduction electrocatalyst. Nanoscale 9(2), 862–868 (2017)

    Article  CAS  Google Scholar 

  25. Q.J. Niu, J.X. Guo, B.L. Chen, J. Nie, X.D. Guo, G.P. Ma, Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon 114, 250–260 (2017)

    Article  CAS  Google Scholar 

  26. J.W. Xiao, C. Zhao, C.C. Hu, J.B. Xi, S. Wang, Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst. J. Power Sources 348, 183–192 (2017)

    Article  CAS  Google Scholar 

  27. S.F. Fu, Z. Zhu, J.H. Song, D. Du, Y.H. Lin, Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 7(19), 1700363 (2017)

    Article  CAS  Google Scholar 

  28. J.H. Xue, L. Zhao, Z.Y. Dou, Y. Yang, Y. Guan, Z. Zhu, L.L. Cui, Nitrogen-doped 3D porous carbons with iron carbide nanoparticles encapsulated in graphitic layers derived from functionalized MOF as an efficient noble-metal-free oxygen reduction electrocatalysts in both acidic and alkaline media. RSC Adv. 6(112), 110820–110830 (2016)

    Article  CAS  Google Scholar 

  29. H.L. Jiang, Y.F. Yao, Y.H. Zhu, Y.Y. Liu, Y.H. Su, X.L. Yang, C.Z. Li, Iron carbide nanoparticles encapsulated in mesoporous Fe-N doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 7(38), 21511–21520 (2015)

    Article  CAS  Google Scholar 

  30. J.Y. Liu, Y. Liu, P. Li, L.H. Wang, H.R. Zhang, H. Liu, J.L. Liu, Y.X. Wang, W. Tian, X.B. Wang, Z.T. Li, M.B. Wu, Fe-N-doped porous carbon from petroleum asphalt for highly efficient oxygen reduction reaction. Carbon 126, 1–8 (2018)

    Article  CAS  Google Scholar 

  31. F.L. Meng, Z.L. Wang, H.X. Zhong, J. Wang, J.M. Yan, X.B. Zhang, Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 28(36), 7948–7955 (2016)

    Article  CAS  Google Scholar 

  32. C. Wang, Z.F. Li, L.K. Wang, X.L. Niu, S.W. Wang, Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bi-functional oxygen electrocatalysts for rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 7(16), 13873–13885 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The work has been supported by the National Natural Science Foundation of China (No. 51703225 and 21603017) and the Natural Science Foundation of Jilin Province, China (No. 20170101095JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Jin or Lili Cui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, E., Yang, Y. & Cui, L. Confining Iron Carbide Growth in Porous Carbon to Improve the Electrocatalytic Performance for Oxygen Reduction Reaction. Electrocatalysis 11, 354–363 (2020). https://doi.org/10.1007/s12678-020-00596-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00596-w

Keywords

Navigation