Skip to main content

Surface Sensitivity of Hydrogen Evolution and Formaldehyde Reduction on Differently Oriented TiO2 Anatase Nanocrystals

Abstract

Selectivity of nanocrystalline anatase electrodes with different preferential surface orientation in formaldehyde reduction was assessed as a model of oxide-based catalyst for electrochemical CO2 valuation. Cathodic behavior of TiO2 (anatase)-based electrodes observed in formaldehyde reaction integrates, in fact, several processes including hydrogen evolution, formaldehyde reduction, and proton insertion into anatase structure. The electrochemical activity of the anatase-based cathodes is, regardless of the surface orientation, dominated by proton insertion. The proton insertion is more pronounced on {001}-oriented anatase than on {101}-oriented nanocrystals due to anisotropy of the proton transport in the anatase which is more facile in the (001) direction. Aside from the proton insertion, both anatase orientations also differ in selectivity in the formaldehyde reduction. While {101} surface orientation produces primarily hydrogen and methanol, the same process on {001}-oriented surfaces shows the ability to produce aside of methanol also hydrocarbons most likely methane. The overall activity towards the reduction of organics is, however, lower than that of metals.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    S. Zinoviev, F. Müller-Langer, P. Das, N. Bertero, P. Fornasiero, M. Kaltschmitt, G. Centi, S. Miertus, Next-generation biofuels: Survey of emerging technologies and sustainability issues. ChemSusChem 3, 1106–1133 (2010)

    Article  CAS  Google Scholar 

  2. 2.

    F. Geppert, D. Liu, M. van Eerten-Jansen, E. Weidner, C. Buisman, A. ter Heijne, Bioelectrochemical power-to-gas: State of the art and future perspectives. Trends Biotechnol. 34(11), 879–894 (2016)

    Article  CAS  Google Scholar 

  3. 3.

    S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3), 1259–1278 (2010)

    Article  CAS  Google Scholar 

  4. 4.

    Y. Hori, In Modern Aspects of Electrochemistry, Vol 42, Ed. by C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco (Springer, New York, NY, 2008) p.89

  5. 5.

    J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2 reduction activity of Anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 136(25), 8839–8842 (2014)

    Article  CAS  Google Scholar 

  6. 6.

    H. Gerischer, Neglected problems in the pH dependence of the flatband potential of semiconducting oxides and semiconductors covered with OxideLayers. Electrochim. Acta 34, 1005–1009 (1989)

    Article  Google Scholar 

  7. 7.

    R.M. Torresi, O.R. Cámara, C.P. De Pauli, M.C. Giordano, Hydrogen evolution reaction on anodic titanium oxide films. Electrochim. Acta 32, 1291–1301 (1987)

    Article  CAS  Google Scholar 

  8. 8.

    K.M. Macounová, M. Klusáčková, R. Nebel, M. Zukalová, M. Klementová, I.E. Castelli, M.D. Spo, J. Rossmeisl, L. Kavan, P. Krtil, Synergetic surface sensitivity of photoelectrochemical water oxidation on TiO2 (anatase) electrodes. J. Phys. Chem. C 121, 6024–6032 (2017)

    Article  CAS  Google Scholar 

  9. 9.

    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  CAS  Google Scholar 

  10. 10.

    U. Diebold, Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A Mater. Sci. Process. 76, 681–687 (2003)

    Article  CAS  Google Scholar 

  11. 11.

    L. Kavan, M. Grätzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996)

    Article  CAS  Google Scholar 

  12. 12.

    R. Hengerer, L. Kavan, P. Krtil, M. Grätzel, Orientation dependence of charge-transfer processes on TiO2 (Anatase) single crystals. J. Electrochem. Soc. 147, 1467–1472 (2000)

    Article  CAS  Google Scholar 

  13. 13.

    R. Nebel, K.M. Macounová, H. Tarábková, L. Kavan, P. Krtil, Selectivity of Photoelectrochemical water splitting on TiO2 Anatase single crystals. J. Phys. Chem. C 123, 10857–10867 (2019)

    Article  CAS  Google Scholar 

  14. 14.

    B.O. Burek, D.W. Bahnemann, J.Z. Bloh, Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 9, 25–37 (2019)

    Article  CAS  Google Scholar 

  15. 15.

    D.-N. Pei, L. Gong, A.-Y. Zhang, X. Zhang, J.-J. Chen, Y. Mu, H.-Q. Yu, Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat. Commun. 6, 8696 (2015). https://doi.org/10.1038/ncomms9696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    F. Beck, W. Gabriel, Heterogeneous redox catalysis on Ti/TiO2 cathodes—Reduction of nitrobenzene. Angew. Chemie Int. Ed. English 24, 771–772 (1985)

    Article  Google Scholar 

  17. 17.

    A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, J. Electrochemical, CO2 reduction: A classification problem. ChemPhysChem 18(3266–3273) (2017)

  18. 18.

    P.G. Russell, N. Kovac, S. Srinivasan, M. Steinberg, The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde. J. Electrochem. Soc. 124, 1329–1338 (1977)

    Article  CAS  Google Scholar 

  19. 19.

    D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones: XV. Hydration and Acid-base Equilibria Accompanying Reduction of Aliphatic Adehydes. J. Electroanal. Chem. Interfacial Electrochem. 46, 323–342 (1973)

    Article  CAS  Google Scholar 

  20. 20.

    A. Javier, B. Chmielowiec, J. Sanabria-Chinchilla, Y.G. Kim, J.H. Baricuatro, M.P. Soriaga, A DEMS study of the reduction of CO2, CO, and HCHO pre-adsorbed on cu electrodes: Empirical inferences on the CO2RR mechanism. Electrocatalysis 6, 127–131 (2015)

    Article  CAS  Google Scholar 

  21. 21.

    H. Liu, X. Wang, C. Pan, K.M. Liew, First-principles study of formaldehyde adsorption on TiO2 rutile (110) and anatase (001) surfaces. J. Phys. Chem. C 116, 8044–8053 (2012)

    Article  CAS  Google Scholar 

  22. 22.

    M. Kobayashi, K. Tomita, V. Petrykin, M. Yoshimura, M. Kakihana, Direct synthesis of Brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes. J. Mater. Sci. 43, 2158–2162 (2008)

    Article  CAS  Google Scholar 

  23. 23.

    M. Kobayashi, H. Kato, M. Kakihana, Synthesis of titanium dioxide nanocrystals with controlled crystal- and micro-structures from titanium complexes. Nanomater. Nanotechnol. 3, 23 (2013)

    Article  Google Scholar 

  24. 24.

    A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Muñoz, P. Schmuki, TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem. Commun. 8, 528–532 (2006)

    Article  CAS  Google Scholar 

  25. 25.

    M.V. Koudriachova, S.W. de Leeuw, N.M. Harrison, Orthorhombic distortion on li intercalation in Anatase. Phys. Rev. B 69, 054106 (2004)

    Article  CAS  Google Scholar 

  26. 26.

    S. Lunell, A. Stashans, L. Ojamäe, H. Lindström, A. Hagfeldt, Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 119, 7374–7380 (1997)

    Article  CAS  Google Scholar 

  27. 27.

    Y.Y. Birdja, M.T.M. Koper, The importance of Cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139(5), 2030–2034 (2017)

    Article  CAS  Google Scholar 

  28. 28.

    R.C. Millikan, K.S. Pitzer, Infrared spectra and vibrational assignment of monomeric formic acid. J. Chem. Phys. 27, 1305–1308 (1957)

    Article  CAS  Google Scholar 

Download references

Funding

VB would like to acknowledge for the financial support of the European Commission within the framework of the Innovative Training Network Elcorel (Contract 722614).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petr Krtil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buravets, V., Minhová Macounová, K., Nebel, R. et al. Surface Sensitivity of Hydrogen Evolution and Formaldehyde Reduction on Differently Oriented TiO2 Anatase Nanocrystals. Electrocatalysis 12, 15–25 (2021). https://doi.org/10.1007/s12678-020-00595-x

Download citation

Keywords

  • Formaldehyde reduction
  • Titanium dioxide
  • Selectivity
  • DEMS