Skip to main content

Advertisement

Log in

Enhanced Hydrogen Evolution Activity of Ni[MoS2] Hybrids in Alkaline Electrolyte

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this paper is presented a simple one-pot synthesis of a composite electrode with a non-noble metal for the catalysis of hydrogen evolution reaction in alkaline media. The Ni[MoS2] composite electrocatalyst has been synthesized by nickel electrodeposition on nickel electrodes with a conventional Ni-Watts plating bath containing MoS2 particles. This method was selected as it allows obtaining a great interaction between the nickel and the MoS2 in order to maximize the synergistic effect between the materials. Thus, electrodes with catalytic activity for hydrogen evolution reaction (HER) six times higher than the recorded from conventional Ni-Watts catalysts, were obtained in a reproducible and scalable way, which is suitable for industrial applications. Structural and spectroscopic characterizations indicate that the presence of MoS2 particles in the nickel matrix modifies the original properties of the metal. Evaluation of the electrodes electroactivity for HER was carried out by potentiodynamic scans, chronoamperometry, and electrochemical impedance spectroscopy in alkaline electrolyte. A Tafel slope of − 0.12 V dec−1 was found, which is consistent with a two-electron transfer process, i.e., the Volmer reaction being the rate-determining step.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.D. Cortright, R.R. Davda, J.A. Dumesic, Cheminform. 418, 964 (2002)

    CAS  Google Scholar 

  2. M.S. Faber, S. Jin, Energy Envir. Sci. 7, 3519 (2014)

    Article  CAS  Google Scholar 

  3. Y. Xu, C. Zheng, S. Wang, Y. Hou, Electrochim. Acta 174, 653 (2015)

    Article  CAS  Google Scholar 

  4. J. Benson, M. Li, S. Wang, P. Wang, P. Papakonstantinou, ACS Appl. Mat. & Interf. 7, 2514113 (2015)

    Article  CAS  Google Scholar 

  5. R. Bose, S.K. Balasingam, S. Shin, Z. Jin, D.H. Kwon, Y. Jun, Y.S. Min, Langmuir 31, 5220 (2015)

    Article  PubMed  CAS  Google Scholar 

  6. K.C. Pham, Y.H. Chang, D. Mcphail, C. Mattevi, A.T. Wee, D.H. Chua, ACS Appl. Mat. & Interf. 8, 5961 (2016)

    Article  CAS  Google Scholar 

  7. J. Kotowicz, L. Bartela, D. Wecel, K. Dubiel, Energy 118, 156 (2017)

    Article  CAS  Google Scholar 

  8. L. Welder, D. Severin Ryberg, L. Kotzur, T. Grube, M. Robinius, D. Stolten, Energy 158, 1130 (2018)

    Article  Google Scholar 

  9. Z. Zhang, W. Li, M.F. Yuen, T.W. Ng, Y. Tang, C.S. Lee, X. Chen, W. Zhang, Nano Energy 18, 196 (2015)

    Article  CAS  Google Scholar 

  10. D. Celik, M. Yıldız, Int. J. Hydrog Energy 42, 23395 (2017)

    Article  CAS  Google Scholar 

  11. N. Zhang, W. Ma, T. Wu, H. Wang, D. Han, L. Niu, Electrochim. Acta 180, 155 (2015)

    Article  CAS  Google Scholar 

  12. S.M. Saba, M. Muller, M. Robinius, D. Stolten, Int. J. Hydrog Energy 43, 1209 (2018)

    Article  CAS  Google Scholar 

  13. F. Lesure, ACS Appl. Mat. & Interf. 8, 3558 (2015)

    Google Scholar 

  14. F. Li, J. Li, X. Lin, X. Li, Y. Fang, L. Jiao, X. An, Y. Fu, J. Jin, R. Li, J. Power Sources 300, 301 (2015)

    Article  CAS  Google Scholar 

  15. Y. Zhang, L. Zuo, Y. Huang, L. Zhang, F. Lai, W. Fan, T. Liu, ACS Sust. Chem. & Eng. 3, 3140 (2015)

    Article  CAS  Google Scholar 

  16. X. Dai, K. Du, Z. Li, H. Sun, Y. Yang, X. Zhang, X. Li, H. Wang, Chem. Eng. Sci. 134, 572 (2015)

    Article  CAS  Google Scholar 

  17. Z. Zheng, N. Li, C.Q. Wang, D.Y. Li, Y. Zhu, G. Wu, Int. J. Hydrog. Energy 37, 13921 (2012)

    Article  CAS  Google Scholar 

  18. Z. Zheng, N. Li, C.Q. Wang, D.Y. Li, F.Y. Meng, Y. Zhu, Q. Li, G. Wu, J. Power Sources 230, 10 (2013)

    Article  CAS  Google Scholar 

  19. M.J. Gómez, E.A. Franceschini, G.I. Lacconi, Electrocatal. 9, 459 (2018)

    Article  CAS  Google Scholar 

  20. E.A. Franceschini, G.I. Lacconi, Electrocatal. 9, 47 (2018)

    Article  CAS  Google Scholar 

  21. E.A. Franceschini, M.J. Gómez, G.I. Lacconi, J. Energy Chem. 29, 79 (2019)

    Article  Google Scholar 

  22. J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A. Reddy Polu, J. Madhavan, M. Ashokkumar, J. Solid State Chem. 252, 43 (2017)

    Article  CAS  Google Scholar 

  23. Z. He, W. Que, Appl. Mat. Today 3, 23 (2016)

    Article  Google Scholar 

  24. B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317, 100 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. B.C. Stupp, Thin Solid Films 84, 251 (1981)

    Article  Google Scholar 

  27. X. Yin, H. Dong, G. Sun, W. Yang, A.L. Song, Q.H. Du, L. Su, G.J. Shao, Int. J. Hydrog Energy 42, 11262 (2017)

    Article  CAS  Google Scholar 

  28. D. Escalera-López, Y. Niu, J. Yin, K. Cooke, N.V. Rees, R.E. Palmer, ACS Catalysis 6, 6008 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi, H. Zang, D. Yu, C.M. Li, T. Yu, J. Mater. Chem. 22, 8634 (2012)

    Article  CAS  Google Scholar 

  30. J.D. Roy-Mayhew, G. Boschloo, A. Hagfeldt, I.A. Aksay, ACS Appl. Mater. Interfaces 4, 2794 (2012)

    Article  PubMed  CAS  Google Scholar 

  31. J. Tian, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 9577 (2014)

    Article  CAS  Google Scholar 

  32. P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 12855 (2014)

    Article  CAS  Google Scholar 

  33. Z. Pu, Q. Liu, P. Jiang, A.M. Asiri, A.Y. Obaid, X. Sun, Chem. Mater. 26, 4326 (2014)

    Article  CAS  Google Scholar 

  34. J.L. Pinilla, H. Puron, D. Torres, I. Suelves, M. Millan, Carbon 81, 574 (2015)

    Article  CAS  Google Scholar 

  35. J. Rodríguez-Carvajal, Physica B 192, 55 (1993)

    Article  Google Scholar 

  36. R.G. Dickinson, L. Pauling, J. Am. Chem. Soc. 456, 1466 (1923)

    Article  Google Scholar 

  37. P. Quaino, F. Juarez, E. Santos, W. Schmickler, Beilstein J. Nanotech. 5, 846 (2014)

    Article  CAS  Google Scholar 

  38. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillardgeat, Adv. Funct. Mat. 22, 1385 (2012)

    Article  CAS  Google Scholar 

  39. P.A. Bertrand, Phys. Rev. B 44, 5745 (1991)

    Article  CAS  Google Scholar 

  40. D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, ACS Appl. Mat. Interf. 6, 3141 (2014)

    Article  CAS  Google Scholar 

  41. B.C. Windom, W.G. Sawyer, D.W. Hahn, Tribology Lett. 42, 301 (2011)

    Article  CAS  Google Scholar 

  42. E.A. Franceschini, G.I. Lacconi, H.R. Corti, Electrochim. Acta 159, 210 (2015)

    Article  CAS  Google Scholar 

  43. G. Kreysa, B. Hakansson, P. Ekdunge, Electrochim. Acta 33, 1351 (1988)

    Article  CAS  Google Scholar 

  44. M.M. Bruno, E.A. Franceschini, G.A. Planes, H.R. Corti, J. Appl. Electrochem. 40, 257 (2010)

    Article  CAS  Google Scholar 

  45. R.D. Armstrong, M. Henderson, J. Electroanal. Chem. 39, 81 (1972)

    Article  CAS  Google Scholar 

  46. E.A. Franceschini, G.I. Lacconi, H.R. Corti, J. Energy Chem. 26, 466 (2017)

    Article  Google Scholar 

  47. E. Daftsis, N. Pagalos, A. Jannakoudakis, P. Jannakoudakis, E. Theodoridou, R. Rashkov, M. Loukaytsheva, N. Atanassov, J. Electrochem. Soc. 150, C787 (2003)

    Article  CAS  Google Scholar 

  48. J. Panek, A. Serek, A. Budniok, E. Rowinski, E. Lagiewka, Int. J. Hydrog. Energy 28, 169 (2003)

    Article  CAS  Google Scholar 

  49. C. Hitz, A. Lasia, J. Electroanal. Chem. 500, 213 (2001)

    Article  CAS  Google Scholar 

  50. Z. Kerner, J. Pajkossy, Electrochim. Acta 46, 207 (2000)

    Article  CAS  Google Scholar 

  51. A. Lasia, A. Rami, J. Electroanal. Chem. 294, 123 (1990)

    Article  CAS  Google Scholar 

  52. A. Lasia, Current Topics in Electrochem. 2, 239 (1993)

    Google Scholar 

  53. L. Chen, A. Lasia, J. Electrochem. Soc. 138, 3321 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank financial support from National Agency for Scientific and Technological Promotion (PICT 2017-0250), -SECyT-UNC and CONICET (Project PUE-2017). AL thanks for her Scholarships to stimulate scientific vocation granted by CIN and YPF foundation. MJG thanks CONICET for her doctoral fellowship. GIL and EAF are permanent research fellows of CONICET. The authors thank to LAMARX laboratory for its assistance in SEM/EDX measurements, LANN laboratory for its assistance in Raman measurements and to INFIQC for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esteban A. Franceschini or Gabriela I. Lacconi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiácono, A., Gómez, M.J., Franceschini, E.A. et al. Enhanced Hydrogen Evolution Activity of Ni[MoS2] Hybrids in Alkaline Electrolyte. Electrocatalysis 11, 309–316 (2020). https://doi.org/10.1007/s12678-020-00588-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00588-w

Keywords

Navigation