Skip to main content

Advertisement

Log in

Cobalt-Nickel Wrapped Hydroxyapatite Carbon Nanotubes as a New Catalyst in Oxygen Evolution Reaction in Alkaline Media

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Introducing an inexpensive non-noble metal electrocatalyst is an ongoing challenge in oxygen evolution reaction (OER). Here, a bimetallic cobalt-nickel-based catalyst is introduced by metal loading over hydroxyapatite multiwalled carbon nanotube substrate (Co-Ni/HA-MWCNTs). The proposed catalyst is promising and inexpensive and could be favorably applied in water electrolyzing systems. The HA-MWCNTs substrate was produced via the solid-state approach and the loading of Ni and Co species was achieved via the simple impregnation process. Structural characterization of the catalyst was achieved using transmission electron microscopy (TEM), X-Ray diffraction (XRD), and energy-dispersive X-ray analysis (EDX). Electrochemical efficiency of the catalyst for the OER was concluded from low onset potential at 1.50 V (vs RHE) with Tafel slope of 41.8 mV dec−1. In comparison with the HA-free catalyst (Co-Ni/MWCNTs), the Co-Ni/HA-MWCNTs catalyst exhibits an excellent long-term stability up to 10,000 s to bear the current density of 10.0 mA cm−2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017)

    CAS  PubMed  Google Scholar 

  2. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3(3), 399–404 (2012)

    CAS  PubMed  Google Scholar 

  3. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135(23), 8452–8455 (2013)

    CAS  PubMed  Google Scholar 

  4. J. Yu, Y. Zhong, W. Zhou, Z. Shao, Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. J. Power Sources 338, 26–33 (2017)

    CAS  Google Scholar 

  5. P. Ganesan, A. Sivanantham, S. Shanmugam, Nanostructured nickel-cobalt-titanium alloy grown on titanium substrate as efficient electrocatalyst for alkaline water electrolysis. ACS Appl. Mater. Interfaces 9(14), 12416–12426 (2017)

    CAS  PubMed  Google Scholar 

  6. H. Guo, N. Youliwasi, L. Zhao, Y. Chai, C. Liu, Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media. Appl. Surf. Sci. 435, 237–246 (2018)

    CAS  Google Scholar 

  7. Z. Wang, M. Liu, J. Du, Y. Lin, S. Wei, X. Lu, J. Zhang, A facile co-precipitation synthesis of robust FeCo phosphate electrocatalysts for efficient oxygen evolution. Electrochim. Acta 264, 244–250 (2018)

    CAS  Google Scholar 

  8. T.N. Lambert, J.A. Vigil, B. Christensen, Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting. ECS Trans. 75, 1137–1142 (2016)

    CAS  Google Scholar 

  9. Z. Yin, C. Zhu, C. Li, S. Zhang, X. Zhang, Y. Chen, Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale 8(45), 19129–19138 (2016)

    CAS  PubMed  Google Scholar 

  10. A. Balram, H. Zhang, S. Santhanagopalan, Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests. ACS Appl. Mater. Interfaces 9(34), 28355–28365 (2017)

    CAS  PubMed  Google Scholar 

  11. M.E.G. Lyons, M.P. Brandon, A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641, 119–130 (2010)

    CAS  Google Scholar 

  12. Z. Wu, X. Wang, J. Huang, F. Gao, A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 6, 167–178 (2018)

    CAS  Google Scholar 

  13. J. Yu, C. Lv, L. Zhao, L. Zhang, Z. Wang, Q. Liu, Reverse microemulsion-assisted synthesis of NiCo 2 S 4 nanoflakes supported on nickel foam for electrochemical overall water splitting. Adv. Mater. Interfaces 5, 1701396 (2018)

    Google Scholar 

  14. A. Irshad, N. Munichandraiah, Electrodeposited nickel–cobalt–sulfide catalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9(23), 19746–19755 (2017)

    CAS  PubMed  Google Scholar 

  15. N.A.M. Barakat, CoNi/CNTs composite as effective and stable electrode for oxygen evaluation reaction in alkaline media. Int. J. Hydrog. Energy 43, 8623–8631 (2018)

    CAS  Google Scholar 

  16. Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 4, 17587–17603 (2016)

    CAS  Google Scholar 

  17. X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9, 123–129 (2016)

    CAS  Google Scholar 

  18. P. Feng, X. Cheng, J. Li, X. Luo, Calcined nickel-cobalt mixed metal phosphonate with efficient electrocatalytic activity for oxygen evolution reaction. ChemistrySelect. 3, 760–764 (2018)

    CAS  Google Scholar 

  19. P. He, X.-Y. Yu, X.W.D. Lou, Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Ed. 56, 3897–3900 (2017)

    CAS  Google Scholar 

  20. S. Yoon, J.-Y. Yun, J.-H. Lim, B. Yoo, Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. J. Alloys Compd. 693, 964–969 (2017)

    CAS  Google Scholar 

  21. J. Yu, Q. Li, Y. Li, C.-Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016)

    CAS  Google Scholar 

  22. S. Barwe, C. Andronescu, E. Vasile, J. Masa, W. Schuhmann, Influence of Ni to Co ratio in mixed Co and Ni phosphides on their electrocatalytic oxygen evolution activity. Electrochem. Commun. 79, 41–45 (2017)

    CAS  Google Scholar 

  23. I. Smičiklas, A. Onjia, S. Raičević, Đ. Janaćković, M. Mitrić, Factors influencing the removal of divalent cations by hydroxyapatite. J. Hazard. Mater. 152(2), 876–884 (2008)

    PubMed  Google Scholar 

  24. J. Oliva, J. De Pablo, J.-L. Cortina, J. Cama, C. Ayora, Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite IITM: Column experiments. J. Hazard. Mater. 194, 312–323 (2011)

    CAS  PubMed  Google Scholar 

  25. S. Osswald, M. Havel, Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38, 728–736 (2007)

    CAS  Google Scholar 

  26. A. Safavi, M. Sorouri, Multiwalled carbon nanotube wrapped hydroxyapatite, convenient synthesis via microwave assisted solid state metathesis. Mater. Lett. 91, 287–290 (2013)

    CAS  Google Scholar 

  27. N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J. Taiwan Inst. Chem. Eng. 43, 125–131 (2011)

    Google Scholar 

  28. Y. Marcus, Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988)

    CAS  Google Scholar 

  29. I.J. Godwin, M.E.G. Lyons, Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solution. Electrochem. Commun. 32, 39–42 (2013)

    CAS  Google Scholar 

  30. S.R. Mellsop, A. Gardiner, A.T. Marshall, Electrocatalytic oxygen evolution on nickel oxy-hydroxide anodes: improvement through rejuvenation. Electrochim. Acta 180, 501–506 (2015)

    CAS  Google Scholar 

  31. M.E.G. Lyons, M.P. Brandon, The oxygen evolution reaction on passive oxide covered transition metal electrodes in alkaline solution part II - cobalt. Int. J. Electrochem. Sci. 3, 1425–1462 (2008)

    CAS  Google Scholar 

  32. B. Schneiderová, J. Demel, A. Zhigunov, J. Bohuslav, H. Tarábková, P. Janda, K. Lang, Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties. J. Colloid Interface Sci. 499, 138–144 (2017)

    PubMed  Google Scholar 

  33. D. Baronetto, I.M. Kodintsev, S. Trasatti, Origin of ohmic losses at Co3O4/Ti electrodes. J. Appl. Electrochem. 24, 189–194 (1994)

    CAS  Google Scholar 

  34. J. Vilana, E. Gómez, E. Vallés, Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation. Appl. Surf. Sci. 360, 816–825 (2016)

    CAS  Google Scholar 

  35. M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015)

    CAS  Google Scholar 

  36. M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137(10), 3638–3648 (2015)

    CAS  PubMed  Google Scholar 

  37. Y. Zhang, Oxygen evolution reaction on Ni hydroxide film electrode containing various content of Co. Int. J. Hydrog. Energy 24, 529–536 (1999)

    Google Scholar 

  38. D. Merki, H. Vrubel, L. Rovelli, S. Fierro, X. Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515–2525 (2012)

    CAS  Google Scholar 

  39. K. Wang, C. Liu, W. Wang, N. Mitsuzaki, Z. Chen, Synthesis and electrochemical performance of nickel–cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction. J. Mater. Sci. Mater. Electron. 30, 4144–4151 (2019)

    CAS  Google Scholar 

  40. I. Barauskienė, E. Valatka, Layered nickel-cobalt oxide coatings on stainless steel as an electrocatalyst for oxygen evolution reaction. Electrocatalysis. 10, 63–71 (2019)

    Google Scholar 

  41. K. Ao, J. Dong, C. Fan, D. Wang, Y. Cai, D. Li, F. Huang, Q. Wei, Formation of yolk–shelled nickel–cobalt selenide dodecahedral nanocages from metal–organic frameworks for efficient hydrogen and oxygen evolution. ACS Sustain. Chem. Eng. 6, 10952–10959 (2018)

    CAS  Google Scholar 

  42. S. Li, Y. Wang, S. Peng, L. Zhang, A.M. Al-Enizi, H. Zhang, X. Sun, G. Zheng, Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 6, 1501661 (2016)

    Google Scholar 

  43. C. Chang, L. Zhang, C.-W. Hsu, X.-F. Chuah, S.-Y. Lu, Mixed NiO/NiCo 2 O 4 nanocrystals grown from the skeleton of a 3D porous nickel network as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mater. Interfaces 10(1), 417–426 (2018)

    CAS  PubMed  Google Scholar 

  44. S. Cho, S. Lee, B. Hou, J. Kim, Y. Jo, H. Woo, S.M. Pawar, A.I. Inamdar, Y. Park, S. Cha, H. Kim, H. Im, Optimizing nanosheet nickel cobalt oxide as an anode material for bifunctional electrochemical energy storage and oxygen electrocatalysis. Electrochim. Acta 274, 279–287 (2018)

    CAS  Google Scholar 

  45. X. Deng, S. Öztürk, C. Weidenthaler, H. Tüysüz, Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 9(25), 21225–21233 (2017)

    CAS  PubMed  Google Scholar 

  46. B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv. Funct. Mater. 28, 1706008 (2018)

    Google Scholar 

  47. G. Zeng, M. Liao, C. Zhou, X. Chen, Y. Wang, D. Xiao, Iron and nickel co-doped cobalt hydroxide nanosheets with enhanced activity for oxygen evolution reaction. RSC Adv. 6, 42255–42262 (2016)

    CAS  Google Scholar 

  48. B. Bayatsarmadi, Y. Zheng, V. Russo, L. Ge, C.S. Casari, S. Qiao, Highly active nickel–cobalt/nanocarbon thin films as efficient water splitting electrodes. Nanoscale 8(43), 18507–18515 (2016)

    CAS  PubMed  Google Scholar 

  49. J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu, P. Xi, Self-supported nanoporous NiCo 2 O 4 nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting. Nanoscale. 8(3), 1390–1400 (2016)

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received support for this work from Iran’s National Elites Foundation and Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Safavi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safavi, A., Mohammadi, A. & Sorouri, M. Cobalt-Nickel Wrapped Hydroxyapatite Carbon Nanotubes as a New Catalyst in Oxygen Evolution Reaction in Alkaline Media. Electrocatalysis 11, 226–233 (2020). https://doi.org/10.1007/s12678-019-00565-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00565-y

Keywords

Navigation