Skip to main content

Advertisement

Log in

Biocompatible Palladium Telluride Quantum Dot-Amplified Biosensor for HIV Drug

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Indinavir (IDV) is a potent and well-tolerated protease inhibitor antiretroviral (ARV) drug used as a component of the highly active antiretroviral therapy (HAART) of human immunodeficiency virus (HIV). It undergoes hepatic first-pass metabolism that is catalysed by microsomal cytochrome P450-3A4 enzyme (CYP3A4), which results in pharmacokinetics that may be favourable or adverse. Therapeutic drug monitoring (TDM) of IDV during HIV treatment is therefore critical, in order to prevent the adverse effects of its first-pass metabolism and optimise an individual’s dosage regime. Biosensors are now the preferred diagnostic tools for TDM assessment at point-of-care, due to their high sensitivity and real-time response. An electrochemical biosensor for IDV was prepared by depositing a thin film of CYP3A4 (a thiolate enzyme) and thioglycolic acid-capped palladium telluride quantum dot (TGA-PdTeQD) on a cysteamine-functionalised gold disk electrode (Cyst|Au) using a combination of thiol and carbodiimide covalent bonding chemistries. The electrochemical signatures of the biosensor (CYP3A4|TGA-PdTeQD|Cyst|Au) were determined by cyclic voltammetry (CV) that was performed at a scan rate of 500 mV s−1, and the sensor responses at the characteristic reduction peak potential value of − 0.26 V were recorded. The sensitivity, linear range (LR) and limit of detection (LOD) values of the indinavir biosensor were 4.45 ± 0.11 μA nM−1 IDV, 0.5–1.0 nM IDV (i.e. 3.6 × 10−4–7.1 × 10−4 mg L−1 IDV) and 4.5 × 10−4 mg L−1 IDV, respectively. The values of the two analytical parameters (LR and LOD) of the biosensor were by up to four orders of magnitude lower than the maximum plasma concentration (Cmax) values of indinavir (0.13–8.6 mg L−1 IDV). The IDV biosensor was successfully used to detect IDV in human serum samples containing dissolved indinavir tablet. This, therefore, indicates the indinavir biosensor’s suitability for TDM applications, using samples obtained within 1–2 h of drug intake at point-of-care, for which very low levels of the drug are expected.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5:
Fig. 6

Similar content being viewed by others

References

  1. V.V. Shumyantseva, A.V. Kuzikov, R.A. Masamrekh, T.V. Bulko, A.I. Archakov, Biosens Bioelectron 121, 192 (2018)

    CAS  PubMed  Google Scholar 

  2. S.C. Preissner, M.F. Hoffmann, R. Preissner, M. Dunkel, A. Gewiess, S. Preissner, PLoS One 8, e82562 (2013)

    PubMed  PubMed Central  Google Scholar 

  3. S.C. Gay, A.G. Roberts, J.R. Halpert, Future Med Chem 2, 1451 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Ning, Z. Tian, B. Wang, G. Ge, Y. An, J. Hou, C. Wang, X. Zhao, Y. Li, X. Tian, Z. Yu, X. Huo, C. Sun, L. Feng, J. Cui, X. Ma, Mater Chem Front 2, 2013 (2018)

    CAS  Google Scholar 

  5. I.G. Denisov, B.J. Baas, Y.V. Grinkova, S.G. Sligar, J Biol Chem 282, 7066 (2007)

    CAS  PubMed  Google Scholar 

  6. F.J. Gonzalez, Drug Metab Rev 35, 319 (2003)

    CAS  PubMed  Google Scholar 

  7. F.P. Guengerich, Mol Interv 3, 194 (2003)

    CAS  PubMed  Google Scholar 

  8. F.P. Guengerich, Chem Res Toxicol 21, 70 (2008)

    CAS  PubMed  Google Scholar 

  9. U.M. Zanger, M.H. Hofmann, Acta Chim Slov 55, 38 (2008)

    CAS  Google Scholar 

  10. U.M. Zanger, M. Schwab, Pharmacol Ther 138, 103 (2013)

    CAS  PubMed  Google Scholar 

  11. S. Marchetti, R. Mazzanti, J.H. Beijnen, J.H.M. Schellens, Oncologist 12, 927 (2007)

    PubMed  Google Scholar 

  12. J.A. Grabowsky, Ann Pharmacother 47, 1055 (2013)

    PubMed  Google Scholar 

  13. N. Wang, C. Gao, F. Xue, Y. Han, T. Li, X. Cao, X. Zhang, Y. Zhang, Z.L. Wang, ACS Nano 9, 3159 (2015)

    CAS  PubMed  Google Scholar 

  14. P. Nowak, M. Woźniakiewicz, P. Kościelniak, TrAC - Trends Anal Chem 59, 42 (2014)

    CAS  Google Scholar 

  15. A.K. Udit, M.G. Hill, H.B. Gray, Langmuir 22, 10854 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. V.E.V. Ferrero, L. Andolfi, G. Di Nardo, S.J. Sadeghi, A. Fantuzzi, S. Cannistraro, G. Gilardi, Anal Chem 80, 8438 (2008)

    CAS  PubMed  Google Scholar 

  17. H. Huang, J.-J. Zhu, Analyst 138, 5855 (2013)

    CAS  PubMed  Google Scholar 

  18. E. Nxusani, P.M. Ndangili, R.A. Olowu, A.N. Jijana, T. Waryo, N. Jahed, R.F. Ajayi, P. Baker, E.I. Iwuoha, Nano Hybrids 1, 1 (2012)

    CAS  Google Scholar 

  19. A. Ignaszak, N. Hendricks, T. Waryo, E. Songa, N. Jahed, R. Ngece, A. Al-Ahmed, B. Kgarebe, P. Baker, E.I. Iwuoha, J Pharm Biomed Anal 49, 498 (2009)

    CAS  PubMed  Google Scholar 

  20. U. Feleni, U. Sidwaba, H. Makelane, E. Iwuoha, J Nanosci Nanotechnol 19, 1 (2019)

    Google Scholar 

  21. H. Yu, Z. Song, Q. Liu, X. Ji, J. Liu, S. Xu, H. Kan, B. Zhang, J. Liu, J. Jiang, L. Miao, H. Liu, Sensors Actuators. B Chem 248, 1029 (2017)

    CAS  Google Scholar 

  22. S. Shahrokhian, A. Mahdavi-Shakib, M. Ghalkhani, R.S. Saberi, Electroanalysis 24, 425 (2012)

    CAS  Google Scholar 

  23. N.u.H. Alvi, V.J. Gómez, P.E.D.S. Rodriguez, P. Kumar, S. Zaman, M. Willander, R. Nötzel, Sensors (Basel) 13, 13917 (2013)

    Google Scholar 

  24. T. Teranishi, M. Miyake, Chem Mater 10, 594 (1998)

    CAS  Google Scholar 

  25. J.D. Olson, G.P. Gray, S.A. Carter, Sol Energy Mater Sol Cells 93, 519 (2009)

    CAS  Google Scholar 

  26. B. Sun, N.C. Greenham, Phys Chem Chem Phys 8, 3557 (2006)

    CAS  PubMed  Google Scholar 

  27. B. Sun, H.J. Snaith, A.S. Dhoot, S. Westenhoff, N.C. Greenham, J Appl Phys 97 (2005)

  28. R. Molaie, K. Farhadi, M. Forough, S. Haijizadeh, J Nanostruct 8, 1 (2018)

    Google Scholar 

  29. M. Rafi Shaik, Z.J.Q. Ali, M. Khan, M. Kuniyil, M.E. Assal, H.Z. Alkhathlan, A. Al-Warthan, M.R.H. Siddiqui, M. Khan, S.F. Adil, Molecules 22 (2017)

    PubMed Central  Google Scholar 

  30. P.A. Namini, A.A. Babaluo, B. Bayati, Int J Nanosci Nanotechnol 3, 37 (2007)

    Google Scholar 

  31. M. Masikini, P.M. Ndangili, C.O. Ikpo, U. Feleni, S. Duoman, U. Sidwaba, T.T. Waryo, P.G.L. Baker, E.I. Iwuoha, J Nanopart Res 40, 29 (2016)

    CAS  Google Scholar 

  32. S.A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K.R. Zavadil, W.O. Wallace, D. Werder, V.I. Klimov, J Am Chem Soc 129, 11708 (2007)

    CAS  PubMed  Google Scholar 

  33. A. Arshad, R. Akram, S. Iqbal, F. Batool, B. Iqbal, B. Khalid, A.U. Khan, Arab J Chem (2016)

  34. J.K. Cooper, A.M. Franco, S. Gul, C. Corrado, J.Z. Zhang, Langmuir 27, 8486 (2011)

    CAS  PubMed  Google Scholar 

  35. A.E. Vikraman, A.R. Jose, M. Jacob, K.G. Kumar, Anal Methods 7, 16 (2015)

    Google Scholar 

  36. S.S. Rokade, K.A. Joshi, K. Mahajan, G. Tomar, D.S. Dubal, V. Singh, R. Kitture, J. Bellare, S. Ghosh, Glob J Nanomed 2, 5 (2017)

    Google Scholar 

  37. S.H. Shin, J. Bajaj, L.A. Moudy, D.T. Cheung, Appl Phys Lett 43, 68 (1983)

    CAS  Google Scholar 

  38. S.J. Byrne, S.A. Corr, T.Y. Rakovich, Y.K. Gun’ko, Y.P. Rakovich, J.F. Donegan, S. Mitchell, Y. Volkov, J Mater Chem 16 (2006)

  39. H. Borchert, D.V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Möller, H. Weller, J Phys Chem B 107, 9662 (2003)

    CAS  Google Scholar 

  40. S.M. Baesman, T.D. Bullen, J. Dewald, D. Zhang, S. Curran, F.S. Islam, T.J. Beveridge, R.S. Oremland, Appl EnvironMicrobiol 73, 2135 (2007)

    CAS  Google Scholar 

  41. A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, N.V. Surovtsev, S.V. Adichtchev, Y.M. Azhniuk, C. Himcinschi, M. Kehr, D.R.T. Zahn, J Phys Conf Ser 245, 012045 (2010)

    Google Scholar 

  42. J. Heo, C.-S. Hwang, Nanomaterials 5, 1955 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. J.S.W. Mak, A.A. Farah, F. Chen, A.S. Helmy, ACS Nano 5, 3823 (2011)

    CAS  PubMed  Google Scholar 

  44. B.E. Conway, Prog Surf Sci 49, 331 (1995)

    CAS  Google Scholar 

  45. K. De Wael, A. Verstraete, S. Van Vlierberghe, W. Dejonghe, P. Dubruel, A. Adriaens, Int J Electrochem Sci 6, 1810 (2011)

    Google Scholar 

  46. A. Ulman, Chem Rev 96, 1533 (1996)

    CAS  PubMed  Google Scholar 

  47. B.R. Kozub, N.V. Rees, R.G. Compton, Sensors Actuators. B Chem 143, 539 (2010)

    CAS  Google Scholar 

  48. T. Łuczak, Int J Electrochem 2011, 1 (2011)

    Google Scholar 

  49. Q. Cheng, A. Brajter-Toth, Anal Chem 64, 1998 (1992)

    CAS  Google Scholar 

  50. L.H. Wang, W.S. Huang, Sensors 12, 3562 (2012)

    CAS  PubMed  Google Scholar 

  51. A.I. Gopalan, K.P. Lee, K.M. Manesh, P. Santhosh, J.H. Kim, J Mol Catal A Chem 256, 335 (2006)

    CAS  Google Scholar 

  52. A. Manickam, C.A. Johnson, S. Kavusi, A. Hassibi, Sensors (Switzerland) 12, 14467 (2012)

    CAS  Google Scholar 

  53. M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochim Acta 53, 7583 (2008)

    Google Scholar 

  54. K. Yoshii, Y. Oshino, N. Tachikawa, K. Toshima, Y. Katayama, Electrochem Commun 52, 21 (2015)

    CAS  Google Scholar 

  55. C.S. Lim, K. Hola, A. Ambrosi, R. Zboril, M. Pumera, Electrochem Commun 52, 75 (2015)

    CAS  Google Scholar 

  56. M. Yang, J.L. Kabulski, L. Wollenberg, X. Chen, M. Subramanian, T.S. Tracy, D. Lederman, P.M. Gannett, N. Wu, Drug Metab Dispos 37, 892 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. N.R. Hendricks, T.T. Waryo, O. Arotiba, N. Jahed, P.G.L. Baker, E.I. Iwuoha, Electrochim Acta 54, 1925 (2009)

    CAS  Google Scholar 

  58. B. Dogan, D. Canbaz, S.A. Ozkan, B. Uslu, Pharmazie 61, 409 (2006)

    CAS  PubMed  Google Scholar 

  59. A.C. Sather, H.G. Lee, V.Y. De La Rosa, Y. Yang, P. Müller, S.L. Buchwald, J Am Chem Soc 137, 13433 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Y. He, X. Yang, Q. Han, J. Zheng, Molecules 22, 1 (2017)

    Google Scholar 

  61. R. Chokkareddy, N.K. Bhajanthri, G.G. Redhi, Biosensors 7, 21 (2017)

    Google Scholar 

  62. C.A. Hasemann, R.G. Kurumbail, S.S. Boddupalli, J.A. Peterson, J. Deisenhofer, Structure 3, 41 (1995)

    CAS  PubMed  Google Scholar 

  63. S.C. Piscitelli, A.H. Burstein, D. Chaitt, R.M. Alfaro, J. Falloon, Lancet 355, 547 (2000)

    CAS  PubMed  Google Scholar 

  64. N. Erk, Pharmazie 59, 183 (2004)

    CAS  PubMed  Google Scholar 

  65. K. Rajitha, N.L. Prasanna, R. Naveen, C.H. Ranjth, A.A. Kumar, Int J Pharm Pharm Sci 6, 8 (2014)

    Google Scholar 

  66. E. Marchei, R. Pacifici, G. Tossini, R. Di Fava, L. Valvo, P. Zuccaro, J Liq Chromatogr Relat Technol 24, 2325 (2001)

    CAS  Google Scholar 

  67. J.M. Poirier, P. Robidou, P. Jaillon, Ther Drug Monit 22, 4 (2000)

    Google Scholar 

  68. A.L. Jayewardene, B. Kearney, J.A. Stone, J.G. Gambertoglio, F.T. Aweeka, J Pharm Biomed Anal 25, 309 (2001)

    CAS  PubMed  Google Scholar 

  69. W.K. Kraft, J.B. McCrea, G.A. Winchell, A. Carides, R. Lowry, E.J. Woolf, S.E. Kusma, P.J. Deutsch, H.E. Greenberg, S.A. Waldman, J Clin Pharmacol 44, 305 (2004)

    CAS  PubMed  Google Scholar 

  70. R. Hajian, Z. Tayebi, N. Shams, J Pharm Anal 7, 27 (2017)

    PubMed  Google Scholar 

  71. T.D. Gibson, ANALUSIS 27, 630 (1999)

    CAS  Google Scholar 

  72. C. Sarika, K. Rekha, B. Narasimha Murthy, 3 Biotech 5, 911 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. A. Chaubey, B.D. Malhotra, Biosens Bioelectron 17, 441 (2002)

    CAS  PubMed  Google Scholar 

  74. F. Ricci, A. Amine, G. Palleschi, D. Moscone, Biosens Bioelectron 18, 165 (2003)

    CAS  PubMed  Google Scholar 

  75. D. Ravi Shankaran, N. Uehara, T. Kato, Biosens Bioelectron 18, 721 (2003)

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the South African Department of Science and Technology’s (DST’s) National Nanoscience Postgraduate Teaching and Training Platform (NNPTTP), and the National Research Foundation (NRF) of South Africa Research Chair Initiative Grant Number 85102, for NanoElectrochemistry and Sensor Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usisipho Feleni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feleni, U., Sidwaba, U., Ntshongontshi, N. et al. Biocompatible Palladium Telluride Quantum Dot-Amplified Biosensor for HIV Drug. Electrocatalysis 11, 68–76 (2020). https://doi.org/10.1007/s12678-019-00563-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00563-0

Keywords

Navigation