Characterization of Amorphous Ni-Nb-Y Nanoparticles for the Hydrogen Evolution Reaction Produced Through Surfactant-Assisted Ball Milling

  • S. Ghobrial
  • K. M. ColeEmail author
  • D. W. Kirk
  • S. J. Thorpe
Original Research


Amorphous Ni79.2Nb12.5Y8.3 and Ni81.3Nb6.3Y12.5 nanoparticles were synthesized using cryogenic mechanical alloying followed by surfactant-assisted high energy ball milling (SA-HEBM). These alloys were tested towards the hydrogen evolution reaction (HER) along with pure crystalline Ni and Ni5Y nanoparticles also produced through SA-HEBM. This two-stage ball milling process provided a novel processing route for the production of nanostructured/amorphous materials with a wide range of possible compositions not achievable through rapid solidification, electrodeposition, or chemical reduction techniques. The investigation of different surfactant and solvent concentrations resulted in improved nanoparticle yields whereby average particle sizes between 41 and 89 nm were obtained for crystalline and amorphous materials. Electrochemical testing showed that Ni81.3Nb6.3Y12.5 exhibited the lowest Tafel values and the fastest HER kinetics on both an electrochemically active surface area and on a mass loading basis. This investigation demonstrates their potential for use in anion exchange membrane water electrolysis.

Graphical Abstract


Surfactant-assisted ball milling Hydrogen Evolution Amorphous Nanoparticles 



This work was supported by the Surface Engineering and Electrochemistry (SEE) Research Group, Dept. of Materials Science and Engineering, University of Toronto. The TEM research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies. The authors gratefully acknowledge the assistance of Prof. E. J. Acosta in the Dept. of Chemical Engineering and Applied Chemistry at the University of Toronto for useful discussions on surfactant milling.

Funding Information

The authors gratefully acknowledge the financial support from the Natural Science and Engineering Research Council of Canada (NSERC Discovery Frontiers Grant) through the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by Grant No. RGPNM 477963-2015.


  1. 1.
    M.K. Cho, H.-Y. Park, S. Choe, S.J. Yoo, J.Y. Kim, H.-J. Kim, D. Henkensmeier, S.Y. Lee, Y.-E. Sung, H.S. Park, J.H. Jang, Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis. J. Power Sources 347, 283–290 (2017)Google Scholar
  2. 2.
    H. Ito, N. Miyazaki, S. Sugiyama, M. Ishida, Y. Nakamura, S. Iwasaki, Y. Hasegawa, A. Nakano, Investigations on electrode configurations for anion exchange membrane electrolysis. J. Appl. Electrochem. 48(3), 305–316 (2018)Google Scholar
  3. 3.
    Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.Y. Wang, Solid-state water electrolysis with an alkaline membrane. J. Am. Chem. Soc. 134(22), 9054–9057 (2012)Google Scholar
  4. 4.
    J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7(10), 3135–3191 (2014)Google Scholar
  5. 5.
    I. Vincent, D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sust. Energ. Rev. 81, 1690–1704 (2018)Google Scholar
  6. 6.
    M.A. Hickner, A.M. Herring, E.B. Coughlin, Anion exchange membranes: current status and moving forward. J. Polym. Sci. Part B Polym. Phys. 51(24), 1727–1735 (2013)Google Scholar
  7. 7.
    I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1, 1 (2017)Google Scholar
  8. 8.
    V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16, 57 (2016)Google Scholar
  9. 9.
    S. Ghobrial, D.W. Kirk, S.J. Thorpe, Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts. Electrocatalysis 10(3), 243–252 (2019)Google Scholar
  10. 10.
    K.M. Cole, D.W. Kirk, S.J. Thorpe, In situ Raman study of amorphous and crystalline Ni-Co alloys for the alkaline oxygen evolution reaction. J. Electrochem. Soc. 165(15), J3122–J3129 (2018)Google Scholar
  11. 11.
    Y. Qiu, L. Xin, W. Li, Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir 30(26), 7893–7901 (2014)Google Scholar
  12. 12.
    Y. Liang, X. Sun, A.M. Asiri, Y. He, Nanotechnology 27 (2016)Google Scholar
  13. 13.
    R.D.L. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135(31), 11580–11586 (2013)Google Scholar
  14. 14.
    K. Lian, S.J. Thorpe, D.W. Kirk, The electrocatalytic activity of amorphous and crystalline Ni-Co alloys on the oxygen evolution reaction. Electrochim. Acta 37(1), 169–175 (1992)Google Scholar
  15. 15.
    J.F. Loffler, Bulk metallic glasses. Intermetallics 11(6), 529–540 (2003)Google Scholar
  16. 16.
    A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000)Google Scholar
  17. 17.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46(1-2), 1–184 (2001)Google Scholar
  18. 18.
    M.H. Enayati, F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59(7), 394–416 (2014)Google Scholar
  19. 19.
    S. Ghobrial, D.W. Kirk, S.J. Thorpe, Solid state amorphization in the Ni-Nb-Y system by mechanical alloying. J. Non-Cryst. Solids 502, 1–8 (2018)Google Scholar
  20. 20.
    V.M. Chakka, B. Altuncevahir, Z.Q. Jin, Y. Li, J.P. Liu, J. Appl. Phys. 991, 8 (2006)Google Scholar
  21. 21.
    Y. Wang, Y. Li, C. Rong, J.P. Liu, Nanotechnology 18, 18 (2007)Google Scholar
  22. 22.
    L. Zheng, B. Cui, L. Zhao, W. Li, G.C. Hadjipanayis, Sm2Co17 nanoparticles synthesized by surfactant-assisted high energy ball milling. J. Alloys Compd. 539, 69–73 (2012)Google Scholar
  23. 23.
    P. Saravanan, R. Gopalan, R. Rao, M. Raja, V. Chandrasekaran, SmCo5/Fe nanocomposite magnetic powders processed by magnetic field-assisted ball milling with and without surfactant. J. Phys. D Appl. 40(17), 5021–5026 (2007)Google Scholar
  24. 24.
    N.G. Akdogan, W. Li, G.C. Hadjipanayis, Anisotropic Nd2Fe14B nanoparticles and nanoflakes by surfactant-assisted ball milling (2011), pp. 107–110Google Scholar
  25. 25.
    D. Li, C. Wang, D. Tripkovic, S. Sun, N.M. Markovic, V.R. Stamenkovic, Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal. 2(7), 1358–1362 (2012)Google Scholar
  26. 26.
    Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26(1), 72–83 (2014)Google Scholar
  27. 27.
    C.A. Crouse, E. Michel, Y. Shen, S.J. Knutson, B.K. Hardenstein, J.E. Spowart, S.O. Leontsev, S.L. Semiatin, J. Horwath, Z. Turgut, M.S. Lucas, J. Appl. Phys. 111, 07A724 (2012)Google Scholar
  28. 28.
    S.O. Leontsev, M.S. Lucas, Y. Shen, A. Sheets, J. Horwath, E. Karapetrova, C. Crouse, Surfactant removal study for nano-scale ${\text SmCo}_{5}$ powder prepared by high energy ball milling. IEEE Trans. Magn. 49(7), 3341–3344 (2013)Google Scholar
  29. 29.
    L. Zheng, A.M. Gabay, W. Li, B. Cui, G.C. Hadjipanayis, J. Appl. Phys. 109, 2009 (2011)Google Scholar
  30. 30.
    Z. Wang, F. Choi, E. Acosta, Effect of surfactants on zero-valent iron nanoparticles (NZVI) reactivity. J. Surfactant Deterg. 20(3), 577–588 (2017)Google Scholar
  31. 31.
    M. Eaqub Ali, M. Ullah, S. Bee Abd Hamid, Rev. Adv. Mater. Sci. 37, 1 (2014)Google Scholar
  32. 32.
    S.M. Alia, B.S. Pivovar, Evaluating hydrogen evolution and oxidation in alkaline media to establish baselines. J. Electrochem. Soc. 165(7), F441–F455 (2018)Google Scholar
  33. 33.
    C.C.L. Mccrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015)Google Scholar
  34. 34.
    M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena: Fourth Edition, Fourth Edi (John Wiley & Sons, Hoboken, 2012)Google Scholar
  35. 35.
    B.Z. Cui, A.M. Gabay, W.F. Li, M. Marinescu, J.F. Liu, G.C. Hadjipanayis, J. Appl. Phys. 107, 721 (2010)Google Scholar
  36. 36.
    N.G. Akdogan, G.C. Hadjipanayis, D.J. Sellmyer, J. Appl. Phys. 105, 5 (2009)Google Scholar
  37. 37.
    K. Simeonidis, C. Sarafidis, E. Papastergiadis, M. Angelakeris, I. Tsiaoussis, O. Kalogirou, Evolution of Nd2Fe14B nanoparticles magnetism during surfactant-assisted ball-milling. Intermetallics 19(4), 589–595 (2011)Google Scholar
  38. 38.
    S. Kar, S. Logad, O.P. Choudhary, C. Debnath, S. Verma, K.S. Bartwal, Univers. J. Mater. Sci. 1, 18 (2013)Google Scholar
  39. 39.
    Z. Wang, S. Xu, E. Acosta, Heat of adsorption of surfactants and its role on nanoparticle stabilization. J. Chem. Thermodyn. 91, 256–266 (2015)Google Scholar
  40. 40.
    Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C.N. Sukenik, G. Markovich, Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25), 7907–7911 (2001)Google Scholar
  41. 41.
    P.A. Van Aken, B. Liebscher, Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra. Phys. Chem. Miner. 29(3), 188–200 (2002)Google Scholar
  42. 42.
    M. Hao, S. Garbarino, S. Prabhudev, T. Borsboom-Hanson, G.A. Botton, D.A. Harrington, D. Guay, Vertically aligned Ni nanowires as a platform for kinetically limited water-splitting electrocatalysis. J. Phys. Chem. C 123(2), 1082–1093 (2019)Google Scholar
  43. 43.
    W. Liu, M. Yue, B. Cui, G.C. Hadjipanayis, Permanent magnetic nanoparticles and nanoflakes prepared by surfactant-assisted high-energy ball milling. Rev. Nanosci. Nanotechnol. 3(4), 259–275 (2014)Google Scholar
  44. 44.
    W.F. Li, H. Sepehri-Amin, L.Y. Zheng, B.Z. Cui, A.M. Gabay, K. Hono, W.J. Huang, C. Ni, G.C. Hadjipanayis, Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets. Acta Mater. 60(19), 6685–6691 (2012)Google Scholar
  45. 45.
    M. Grdeń, M. Alsabet, G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces 4(6), 3012–3021 (2012)Google Scholar
  46. 46.
    J. Van Drunen, B. Kinkead, M.C.P. Wang, E. Sourty, B.D. Gates, G. Jerkiewicz, Comprehensive structural, surface-chemical and electrochemical characterization of nickel-based metallic foams. ACS Appl. Mater. Interfaces 5(14), 6712–6722 (2013)Google Scholar
  47. 47.
    G.H. Meier, F.S. Pettit, The oxidation behavior of intermetallic compounds. Mater. Sci. Eng. A 153(1-2), 548–560 (1992)Google Scholar
  48. 48.
    T. Kitamura, C. Iwakura, H. Tamura, Chem. Lett. 5, 965 (1981)Google Scholar
  49. 49.
    F. Rosalbino, G. Borzone, E. Angelini, R. Raggio, Hydrogen evolution reaction on Ni RE (RE=rare earth) crystalline alloys. Electrochim. Acta 48(25-26), 3939–3944 (2003)Google Scholar
  50. 50.
    F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Effect of rare earth metals addition on the corrosion behaviour of crystalline Co–Ni alloys in alkaline solution. J. Electroanal. Chem. 622(2), 161–164 (2008)Google Scholar
  51. 51.
    B.E. Conway, B.V. Tilak, Electrochim. Acta 47, 3571 (2002)Google Scholar
  52. 52.
    L. Peraldo Bicelli, C. Romagnani, M. Rosania, Hydrogen evolution reaction on cobalt. J. Electroanal. Chem. 63(2), 238–244 (1975)Google Scholar
  53. 53.
    M.A.V. Devanathan, M. Selvaratnam, Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage. Trans. Faraday Soc. 56, 1820 (1960)Google Scholar
  54. 54.
    J.O.M. Bockris, S. Srinivasan, Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors. Electrochim. Acta 9(1), 31–44 (1964)Google Scholar
  55. 55.
    J.O.M. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry 2A. Fundementals of Electrodics (Kluwer Academic Publishers, New York, 2002)Google Scholar
  56. 56.
    M.M. Jakšić, Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 29(11), 1539–1550 (1984)Google Scholar
  57. 57.
    I.A. Raj, K.I. Vasu, Transition metal-based hydrogen electrodes in alkaline solution ? electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20(1), 32–38 (1990)Google Scholar
  58. 58.
    C. Fan, D.L. Piron, A. Sleb, P. Paradis, Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141(2), 382 (1994)Google Scholar
  59. 59.
    J.M. Jaksic, M.V. Vojnovic, N.V. Krstajic, Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim. Acta 45(25-26), 4151–4158 (2000)Google Scholar
  60. 60.
    S. Baranton, C. Coutanceau, Appl. Catal. B Environ. 136–137, 1 (2013)Google Scholar
  61. 61.
    M. Gong, D.Y. Wang, C.C. Chen, B.J. Hwang, H. Dai, A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9(1), 28–46 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations