Solvent Engineering of Highly Conductive and Porous Fullerene Ammonium Iodide for Immobilizing Pd Nanoparticles with Enhanced Electrocatalytic Activity Toward Ethanol Oxidation

  • Zhouchen Lin
  • Huanhuan Wang
  • Ming LeiEmail author
Original Research


So far, the application of fullerene derivative support in electrocatalysis has been limited by fullerene’s low electronic conductivity and the difficulty in film morphology control. Although highly conductive (1.5 s m−1) fullerene ammonium iodide (PCBANI) had been demonstrated to be a potential support, the solid self-assembled film is not of benefit for metallic nanoparticle (NP) to exhibit catalytic activity. In this work, we found solvent engineering of pristine PCBANI aggregate could maintain stacked short-range assembly structure and porous morphology. Moreover, PCBANI film fabricated from the optimized DMSO/methanol could immobilize Pd NPs with a uniform size of around 4.8 ± 1.7 nm which was characterized by SEM, TEM, and SAED. The resulting Pd/PCBANI-1-coated electrode exhibits a mass-specific activity for Pd of 3361.0 mA mg−1 at a scan rate of 50 mV s−1 and good stability toward alcohol electrooxidation, which are both significantly higher than that of the Pd/PCBANI-2 fabricated from PCBANI’s acetic acid/methanol dispersion and commercial Pd/C (active carbon). To the best of our knowledge, Pd/PCBANI-1 exhibits almost the highest catalytic activity among the existing fullerene-based Pd nanocatalysts. The high performance of the as-fabricated catalyst is attributed to highly conductive and porous PCBANI support, good dispersibility of Pd NPs on support, and favorable mass transfer.

Graphical Abstract

Highly conductive and porous fullerene ammonium iodide film fabricated from the optimized DMSO/methanol dispersion could be used as a synergistic support to immobilize Pd nanoparticle electrocatalyst which exhibits a highly mass-specific activity for Pd of 3361.0 A g−1.


Highly conductive fullerene Solvent engineering Pd nanoparticle Electrocatalyst Ethanol oxidation 


Funding Information

This study received financial support from the National Natural Science Foundation of China (grant nos. 21442005 and 21642008).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interest.

Supplementary material

12678_2019_535_MOESM1_ESM.docx (89 kb)
ESM 1 (DOCX 88 kb)


  1. 1.
    C.H. Cui, S.H. Yu, Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. Acc. Chem. Res. 46(7), 1427–1437 (2013)CrossRefGoogle Scholar
  2. 2.
    M.A.F. Akhairi, S.K. Kamarudin, Catalysts in direct ethanol fuel cell (DEFC): an overview. Int. J. Hydrog. Energy 41(7), 4214–4228 (2016)CrossRefGoogle Scholar
  3. 3.
    M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: direct ethanol fuel cell. Int. J. Hydrog. Energy 38(22), 9438–9453 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Rao, Y.X. Jiang, B.W. Zhang, L.X. You, Z.H. Li, S.G. Sun, Electrocatalytic oxidation of ethanol. Prog. Chem. 26, 727 (2014)Google Scholar
  5. 5.
    E. Antolini, Palladium in fuel cell catalysis. Energy Environ. Sci. 2(9), 915 (2009)CrossRefGoogle Scholar
  6. 6.
    C.P. Bianchini, K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Liu, C. Koenigsmann, R.R. Adzic, S.S. Wong, Probing ultrathin one-dimensional Pd–Ni nanostructures as oxygen reduction reaction catalysts. ACS Catal. 4(8), 2544–2555 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Antolini, Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B Environ. 88(1-2), 1–24 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J. Power Sources 208, 96–119 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Chen, C. Ostrom, Palladium-based nanomaterials: synthesis and electrochemical applications. Chem. Rev. 115, 11999 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Wei, X.Y. Zhang, Z.Y. Luo, D. Tang, C.X. Chen, T. Zhang, Z.L. Xie, Nitrogen-doped carbon nanotube-supported Pd catalyst for improved electrocatalytic performance toward ethanol electrooxidation. Nano-Micro Lett. 9(1–9), 28 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Zhang, S.F. Lu, Y. Xiang, P.K. Shen, J. Liu, S.P. Jiang, Carbon-nanotubes-supported Pd nanoparticles for alcohol oxidations in fuel cells: effect of number of nanotube walls on activity. ChemSusChem 8(17), 2956–2966 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Pierozynski, Electrooxidation of ethanol on Pd-modified carbon fibre tow material. Int. J. Electrochem. Sci. 8, 634 (2013)Google Scholar
  14. 14.
    X.M. Chen, G.H. Wu, J.M. Chen, X. Chen, Z.X. Xie, X.R. Wang, Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133(11), 3693–3695 (2011)CrossRefGoogle Scholar
  15. 15.
    L.M. Yang, D.F. Yan, C.B. Liu, H.J. Song, Y.H. Tang, S.L. Luo, M.J. Liu, Vertically oriented reduced graphene oxide supported dealloyed palladium–copper nanoparticles for methanol electrooxidation. J. Power Sources 278, 725–732 (2015)CrossRefGoogle Scholar
  16. 16.
    F.F. Ren, H.W. Wang, C.Y. Zhai, M.S. Zhu, R.R. Yue, Y.K. Du, P. Yang, J.K. Xu, W.S. Lu, Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 6(5), 3607–3614 (2014)CrossRefGoogle Scholar
  17. 17.
    R.N. Singh, R. Awasthi, Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation. Cat. Sci. Technol. 1(5), 778 (2011)CrossRefGoogle Scholar
  18. 18.
    L.J. Wu, Y. Wang, Y.P. Wang, X. Du, F. Wang, Y.Y. Gao, T. Qi, C.M. Li, Thermally treated 3-D nanostructured graphenesupported Pd catalyst for significantly improved electrocatalytic performance towards ethanol electrooxidation. RSC Adv. 3(15), 5196 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Park, Y. Shao, H. Wan, P. Rieke, V. Viswanathan, S. Towne, L.V. Saraf, J. Liu, Y.H. Li, Y. Wang, Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem. Commun. 13(3), 258–261 (2011)CrossRefGoogle Scholar
  20. 20.
    D.S. Yu, L.M. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2010)CrossRefGoogle Scholar
  21. 21.
    W.F. Chen, S.R. Li, C.H. Chen, L.F. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23(47), 5679–5683 (2011)CrossRefGoogle Scholar
  22. 22.
    Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49(27), 4603–4607 (2010)CrossRefGoogle Scholar
  23. 23.
    C.G. Hu, H.H. Cheng, Y. Zhao, Y. Hu, Y. Liu, L. Dai, L.T. Qu, Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation. Adv. Mater. 24(40), 5493–5498 (2012)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Zhang, Y. Dong, L. Wang, S. Wang, Scalable synthesis of a Pd nanoparticle loaded hierarchically porous graphene network through multiple synergistic interactions. Chem. Commun. 51, 8357 (2015)CrossRefGoogle Scholar
  25. 25.
    P.J. Fagan, J.C. Calabrese, B. Malone, The chemical nature of buckminsterfullerene (C60) and the characterization of a platinum derivative. Science 252(5009), 1160–1161 (1991)CrossRefGoogle Scholar
  26. 26.
    H. Nagashima, A. Nakaoka, Y. Saito, M. Kato, T. Kawanishi, K. ltoh, C60Pdn: The first organometallic polymer of buckminsterfullerene. J. Chem. Soc. Chem. Commun. 4, 377 (1992)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, L. Jiang, H. Li, L.Z. Fan, W.P. Hu, C.R. Wang, Y.F. Li, S.H. Yang, Single-crystalline C-60 nanostructures by sonophysical preparation: tuning hollow nanobowls as catalyst supports for methanol oxidation. Chem. Eur. J. 17(17), 4921–4926 (2011)CrossRefGoogle Scholar
  28. 28.
    G. Lee, J.H. Shim, H. Kang, K.M. Nam, H. Song, J.T. Park, Monodisperse Pt and PtRu/C-60 hybrid nanoparticles for fuel cell anode catalysts. Chem. Commun. 33, 5036 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Vinodgopal, M. Haria, D. Meisel, P. Kamat, Fullerene-based carbon nanostructures for methanol oxidation. Nano Lett. 4(3), 415–418 (2004)CrossRefGoogle Scholar
  30. 30.
    J. Coro, M. Suárez, L.S.R. Silva, K.I.B. Eguiluz, G.R. Salazar-Banda, Fullerene applications in fuel cells: a review. Int. J. Hydrog. Energy 41, 17944 (2016)CrossRefGoogle Scholar
  31. 31.
    H.R. Barzegar, G.Z. Hu, C. Larsen, X. Jia, L. Edman, T. Wågberg, Palladium nanocrystals supported on photo-transformed C60 nanorods: effect of crystal morphology and electron mobility on the electrocatalytic activity towards ethanol oxidation. Carbon 73, 34–40 (2014)CrossRefGoogle Scholar
  32. 32.
    S.K. Mondal, Synthesis of mesoporous fullerene and its platinum composite: a catalyst for PEMFc. J. Electrochem. Soc. 159, K156 (2012)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, L.X. Ma, Electrochemical fabrication of platinum nanoflakes on fulleropyrrolidine nanosheets and their enhanced electrocatalytic activity and stability for methanol oxidation reaction. J. Power Sources 286, 400–405 (2015)CrossRefGoogle Scholar
  34. 34.
    B.S. Xu, X.W. Yang, X.M. Wang, J.J. Guo, X.G. Liu, A novel catalyst support for DMFC: onion-like fullerenes. J. Power Sources 162(1), 160–164 (2006)CrossRefGoogle Scholar
  35. 35.
    M.V.K. Azhagan, M.V. Vaishampayan, M.V. Shelke, Synthesis and electrochemistry of pseudocapacitive multilayer fullerenes and MnO2 nanocomposites. J. Mater. Chem. A 2(7), 2152–2159 (2014)CrossRefGoogle Scholar
  36. 36.
    Q. Zhang, Z.Y. Bai, M. Shi, L. Yang, J.L. Qiao, K. Jiang, High-efficiency palladium nanoparticles supported on hydroxypropyl-β-cyclodextrin modified fullerene [60] for ethanol oxidation. Electrochimi. Acta 177, 113–117 (2015)CrossRefGoogle Scholar
  37. 37.
    S.S. Li, M. Lei, M.L. Lv, S.E. Watkins, Z.A. Tan, J. Zhu, J.H. Hou, X.W. Chen, Y.F. Li, [6,6]-Phenyl-C61-butyric acid dimethylamino ester as cathode buffer layer for high performance polymer solar cells. Adv. Energy Mater. 3(12), 1569–1574 (2013)CrossRefGoogle Scholar
  38. 38.
    W.X. Jiao, D. Ma, M.L. Lv, W.W. Chen, H.Q. Wang, J. Zhu, M. Lei, X.W. Chen, Self-n-doped [6,6]-phenyl-C61-butyric acid 2-((2-(trimethylammonium)ethyl)-(dimethyl)ammonium) ethyl ester diiodides as a cathode interlayer for inverted polymer solar cells. J. Mater. Chem. A 2, 14720 (2014)CrossRefGoogle Scholar
  39. 39.
    W.W. Chen, W.X. Jiao, D.B. Li, X. Sun, X. Guo, M. Lei, Q. Wang, Y.F. Li, Cross self-n-doping and electron transfer model in a stable and highly conductive fullerene ammonium iodide: a promising cathode interlayer in organic solar cells. Chem. Mater. 28(4), 1227–1235 (2016)CrossRefGoogle Scholar
  40. 40.
    X. Sun, W.W. Chen, L.J. Liang, W. Hu, H.H. Wang, Z.F. Pang, Y.X. Ye, X.R. Hu, Q. Wang, X.Q. Kong, Y.Z. Jin, M. Lei, Construction of electron transfer network by self-assembly of self-n-doped fullerene ammonium iodide. Chem. Mater. 28(23), 8726–8731 (2016)CrossRefGoogle Scholar
  41. 41.
    H.H. Wang, X. Sun, Z.C. Lin, Z.F. Pang, X.Q. Kong, M. Lei, Y.F. Li, Self-assembly of highly conductive self-n-doped fullerene ammonium halides and their application in the in situ solution-processable fabrication of working electrodes for alcohol electrooxidation. RSC Adv. 8(17), 9503–9511 (2018)CrossRefGoogle Scholar
  42. 42.
    J.M. Tour, Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem. Rev. 96(1), 537–554 (1996)CrossRefGoogle Scholar
  43. 43.
    A.M. Cassell, W.A. Scrivens, J.M. Tour, Assembly of DNA/fullerene hybrid materials. Angew. Chem. Int. Ed. 37(11), 1528–1531 (1998)CrossRefGoogle Scholar
  44. 44.
    Ľ. Pikna, O. Milkovič, K. Saksl, M. Heželová, M. Smrčová, P. Puliša, Š. Michalik, J. Gamcová, The structure of nano-palladium deposited on carbon-based supports. J. Solid State Chem. 212, 197–204 (2014)CrossRefGoogle Scholar
  45. 45.
    H.Y. Jin, T.Y. Xiong, Y. Li, X. Xu, M.M. Li, Y. Wang, Improved electrocatalytic activity for ethanol oxidation by Pd@N-doped carbon from biomass. Chem. Commun. 50, 12637 (2014)CrossRefGoogle Scholar
  46. 46.
    Q. Liu, K. Jiang, J.C. Fan, Y. Lin, Y.L. Min, Q.J. Xu, W.B. Cai, Manganese dioxide coated graphene nanoribbons supported palladium nanoparticles as an efficient catalyst for ethanol electrooxidation in alkaline media. Electrochimi. Acta 203, 91–98 (2016)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, J.W. Zhang, P.H. Xiang, J.L. Qiao, Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction. Appl. Surf. Sci. 440, 477–483 (2018)CrossRefGoogle Scholar
  48. 48.
    J.B. Howard, J.T. McKinnon, Y. Makarovsky, A.L. Lafleur, M.E. Johnson, Fullerenes C60 and C70 in flames. Nature 352(6331), 139–141 (1991)CrossRefGoogle Scholar
  49. 49.
    E. Nakamura, H. Isobe, Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 36, 807(2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina

Personalised recommendations