An Exfoliated Graphite-Bismuth Vanadate Composite Photoanode for the Photoelectrochemical Degradation of Acid Orange 7 Dye

  • Benjamin O. Orimolade
  • Omotayo A. ArotibaEmail author
Originak Research


This work investigates the removal of acid orange 7 dye from aqueous solution through photo electrochemical technique using a composite of exfoliated graphite and bismuth vanadate (EG-BiVO4) as photoanode. Monoclinic sheelite BiVO4 nanoparticles were synthesised through the hydrothermal route and subsequently added to prepared EG to form a composite. The EG-BiVO4 composite was fully characterised through XRD, SEM and FTIR. The cyclic voltammograms of the EG-BiVO4 electrodes were obtained in potassium ferricyanide and ferrocyanide redox probe. The XRD result revealed that the BiVO4 has a monoclinic sheelite crystal lattice with particle size of 74.17 nm. The EG-BiVO4 photoanode was applied for the photoelectrochemical degradation of acid orange 7 dye. Concentration decay of the dye was monitored using the UV-Vis spectrophotometer. The photo-assisted process gave improved degradation efficiency of 88% within 90 min. Kinetics study revealed that the process followed the pseudo first-order kinetics and fast with apparent rate constant of 1.60 × 10−2 min−1. The results of this investigation reveal the potential application of BiVO4 photoanode in the photoelectrochemical treatment of dye contaminated water.

Graphical Abstract

Comparison of different degradation processes for the removal of dye in water on an exfoliated graphite-BiVO4 photoanode.


Bismuth vanadate Photoelectrochemical degradation Acid orange 7 dye Exfoliated graphite 


Funding information

Financial supports were received from the following institutions in South Africa: Faculty of Science, University of Johannesburg; Global Excellence and Stature (GES) doctoral support, University of Johannesburg; Centre for Nanomaterials Science Research, University of Johannesburg; National Research Foundation (CPRR Grant number: 98887 and 118546); and Water Research Commission (Grant Number: K5/2567).


  1. 1.
    A.B. dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol. 98(12), 2369–2385 (2007)CrossRefGoogle Scholar
  2. 2.
    N. Barka, A. Assabbane, A. Nounah, Y.A. Ichou, Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres. J. Hazard. Mater. 152(3), 1054–1059 (2008)CrossRefGoogle Scholar
  3. 3.
    W. Sun, C. Zhang, J. Chen, B. Zhang, H. Zhang, Y. Zhang, L. Chen, Accelerating biodegradation of a monoazo dye acid orange 7 by using its endogenous electron donors. J Hazard Mater 324(Pt B), 739–743 (2017)Google Scholar
  4. 4.
    H. Li, J. Qiu, X. Wang, H. Zhang, Decolorization and detoxification of acid orange 7 by zero-valent iron with UV light. J Chem Soc Pakistan 39, 812–819 (2017)Google Scholar
  5. 5.
    S. Akazdam, M. Chafi, W. Yassine, B. Gourich, Removal of acid orange 7 dye from aqueous solution using the exchange resin amberlite FPA-98 as an efficient adsorbent: Kinetics, isotherms, and thermodynamic study. J Mater Environ Sci 8(8), 2993–3012 (2017)Google Scholar
  6. 6.
    A. Shokri, Removal of acid red 33 from aqueous solution by Fenton and photo Fenton processes. J Chem Health Risk 7(2), 119–131 (2017)Google Scholar
  7. 7.
    E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Towards wastewater treatment: Photo-assisted electrochemical degradation of 2-nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem. Eng. J. 317, 290 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Zhou, Z. Chen, Q. Yang, C. Shen, G. Tang, S. Zhao, J. Zhang, D. Chen, Q. Wei, X. Dong, Facile construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance. ChemCatChem 8(19), 3064–3073 (2016)CrossRefGoogle Scholar
  9. 9.
    M.G. Peleyeju, E.H. Umukoro, L. Tshwenya, R. Moutloali, O. Babalola, O.A. Arotiba, Photoelectrocatalytic water treatment systems: Degradation, kinetics and intermediate products studies of sulfamethoxazole on a TiO2–exfoliated graphite electrode. RSC Adv. 7(64), 40571–40580 (2017)CrossRefGoogle Scholar
  10. 10.
    B.N.S. Sampath, B.B.M.O.S. Oluwafemi, Photoelectrochemical degradation of eosin yellowish due on exfoliated graphite – ZnO nanocomposite electrode. J. Mater. Sci. Mater. Electron. 27, 592 (2016)CrossRefGoogle Scholar
  11. 11.
    L.M. Al-Harbi, E.H. El-Mossalamy, H.M. Arafa, A. Al-Owais, M.A. Shah, TiO2 nanoparticles with tetra-pad shape prepared by an economical safe route at very low temperature. Mod. Appl. Sci. 5(130) (2011)Google Scholar
  12. 12.
    W. Tang, Q. Wang, X. Zeng, X. Chen, Photocatalytic degradation on disperse blue with modified nano-TiO2 film electrode. J. Solid State Electrochem. 16(4), 1429–1445 (2012)CrossRefGoogle Scholar
  13. 13.
    S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 141(3), 581–590 (2007)CrossRefGoogle Scholar
  14. 14.
    C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catal. Today 76(2–4), 235–246 (2002)CrossRefGoogle Scholar
  15. 15.
    Y.M. Hunge, M.A. Mahadik, V.S. Mohite, S.S. Kumbhar, N.G. Deshpande, K.Y. Rajpure, A.V. Moholkar, P.S. Patil, C.H. Bhosale, Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films. J. Mater. Sci. Mater. Electron. 27, 1629–1635 (2016)CrossRefGoogle Scholar
  16. 16.
    Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. J. Mater. Sci. Mater. Electron. 26(11), 8404–8412 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Kim, E.T. Igunnu, G.Z. Chen, A sunlight assited dual purpose photoelectrochemical cell for low voltage removal of heavy metals and organic pollutants in wastewater. Chem Eng J 244, 411–421 (2014)Google Scholar
  18. 18.
    F. Chen, F. Yan, Q. Chen, Y. Wang, L. Han, Z. Chen, S. fang, Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation, Dalton Trans. 43(36), 13537 (2014)Google Scholar
  19. 19.
    S. Wu, W. Chen, L. Yan, Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2(8), 2765 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 4(53), 27654 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Xia, J. Li, J. Bai, L. Li, S. Chen, B. Zhou, BiVO4 photoanode with exposed (040) facets for enhanced photoelectrochemical performance. Nano-Micro Lett 10(1), 11 (2018)CrossRefGoogle Scholar
  22. 22.
    C.S. Yaw, M.N. Chong, A.K. Soh, Bismuth vanadate-based photoelectrodes for photoelectrochemical water splitting: Synthesis and characterisation. Adv Sci Technol 99, 9–16 (2016)CrossRefGoogle Scholar
  23. 23.
    T.G. Vo, J.M. Chiu, C.Y. Chiang, Y. Tai, Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 166, 212–221 (2017)CrossRefGoogle Scholar
  24. 24.
    H.L. Tan, R. Amal, Y.H. Ng, Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Appl. Mater. Interfaces 8(42), 28607–28614 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, B. Zou, Preparation of p-n junction Cu2O/BiVO4 heterogenous nanostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 134, 293–135 (2013)CrossRefGoogle Scholar
  26. 26.
    W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shi, P–n junction CuO/BiVO4 heterogeneous nanostructures: Synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 43(18), 6735–6743 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Dong, S. Guo, S. Zhu, D. Xu, L. Zhang, M. Huo, X. Yang, Sunlight responsive BiVO4 photocatalyst: Effects of pH on L-cysteine-assisted hydrothermal treatment and enhanced degradation of ofloxacin. Catal. Commun. 16(1), 250–254 (2011)CrossRefGoogle Scholar
  28. 28.
    S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C 113, 11980–11983 (2009)CrossRefGoogle Scholar
  29. 29.
    E.H. Umukoro, M.G. Peleyeju, A.O. Idris, J.C. Ngila, N. Mabuba, L. Rhyman, P. Ramasami, O.A. Arotiba, Photoelectrocatalytic application of palladium decorated zinc oxide-expanded graphite electrode for the removal of 4-nitrophenol: Experimental and computational studies. RSC Adv. 8(19), 10255–10266 (2018)CrossRefGoogle Scholar
  30. 30.
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4(11), 6425–6432 (2010)CrossRefGoogle Scholar
  31. 31.
    X. Wang, G. Li, J. Ding, H. Peng, K. Chen, Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies. Mater. Res. Bull. 47(11), 3814–3818 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Xiao, H. Chen, Z. Yang, X. Long, Z. Wang, Z. Zhu, Y. Qu, S. Yang, Origin of the different photoelectrochemical performance of mesoporous BiVO4 photoanodes between the BiVO4 and FTO side illumination. J. Phys. Chem. C 119, 23350–23357 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Radoń, D. Łukowiec, Structure of nanographite synthesised by electrochemical oxidation and exfoliation of polycrystalline graphite. Micro Nano Lett 12(12), 955–959 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett. 63(22), 1939–1942 (2009)CrossRefGoogle Scholar
  35. 35.
    V. Ţucureanu, A. Matei, A.M. Avram, V. Ţucureanu, A. Matei, A. Marius, A. Ftir, A. Matei, A.M. Avram, FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46(6), 502–520 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Centre for Nanomaterials Science ResearchUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations