Skip to main content

Oxygen Reduction Reaction Activity of Nano-Flake Carbon-Deposited Pt75Ni25(111) Surfaces

Abstract

Oxygen reduction reaction (ORR) activity was investigated for nano-flake-like carbon-modified Pt75Ni25(111) surfaces. Surface cleaning through Ar+-sputtering and thermal annealing in an ultra-high vacuum (~ 10−8 Pa) resulted in a Pt-enriched topmost surface, i.e., a Pt(111)-skin on Pt75Ni25(111). Arc plasma deposition (APD) of graphite under 0.08 Pa N2 and in vacuum (~ 10−6 Pa) generated nitrogen-doped and non-doped nano-flake-like carbon on the Pt(111)-skin surfaces, respectively. For the latter, non-doped carbon-modified Pt(111)-skin, the area-specific initial ORR activity estimated in O2-saturated 0.1 M HClO4 decreased with increasing thickness of the deposited carbon. In contrast, the former, nitrogen-doped carbon with 2 and 6 Å mass-thickness enhanced the ORR activity. The Pt 4f band energies for the nitrogen-doped Pt(111)-skin were measured by X-ray photoelectron spectroscopy (XPS) and showed the chemical shift to higher biding energy (~ 0.2 eV) compared with the corresponding bands for the non-doped and Pt(111)-skin surfaces. As for the electrochemical structural stability, a specific amount of the non-doped carbon species tends to suppress the degradation of the Pt(111)-skin under applying potential cycles. The results indicate that the surface modifications by the carbon hexagonal networks of the nano-flakes could be applicable to improve ORR performance of the practical Pt-M alloy catalysts.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Z.-Y. Zhou, Z.-Z. Huang, D.-J. Chen, Q. Wang, N. Tian, S.-G. Sun, High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. 49(2), 411–414 (2010)

    Article  CAS  Google Scholar 

  2. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 46(3-4), 285–305 (2007)

    Article  CAS  Google Scholar 

  3. J. Speder, A. Zana, I. Spanos, J.J.K. Kirkensgaard, K. Mortensen, M. Hanzlik, M. Arenz, Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts – the influence of the platinum to carbon ratio on the degradation rate. J. Power Sources 261, 14–22 (2014)

    Article  CAS  Google Scholar 

  4. Y.-J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115(9), 3433–3467 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 52(47), 12337–12340 (2013)

    Article  CAS  Google Scholar 

  6. H. Kim, A.W. Robertson, S.O. Kim, J.M. Kim, J.H. Warner, Resilient high catalytic performance of platinum nanocatalysts with porous graphene envelope. ACS Nano 9(6), 5947–5957 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. D.Y. Chung, S.W. Jun, G. Yoon, H. Kim, J.M. Yoo, K.-S. Lee, T. Kim, H. Shin, A.K. Sinha, S.G. Kwon, K. Kang, T. Hyeon, Y.-E. Sung, Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 139(19), 6669–6674 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. K. Cheng, Z. Kou, J. Zhang, M. Jiang, H. Wu, L. Hu, X. Yang, M. Pan, S. Mu, Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. J. Mater. Chem. A 3(26), 14007–14014 (2015)

    Article  CAS  Google Scholar 

  9. L. Guo, W.-J. Jiang, Y. Zhang, J.-S. Hu, Z.-D. Wei, L.-J. Wan, Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 5(5), 2903–2909 (2015)

    Article  CAS  Google Scholar 

  10. D.-H. Lim, J. Wilcox, Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 116(5), 3653–3660 (2012)

    Article  CAS  Google Scholar 

  11. V. Yarlagadda, M.K. Carpenter, T.E. Moylan, R.S. Kukreja, R. Koestner, W. Gu, L. Thompson, A. Kongkanand, Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3(3), 618–621 (2018)

    Article  CAS  Google Scholar 

  12. Y. Xiao, G. Zhan, Z. Fu, Z. Pan, C. Xiao, S. Wu, C. Chen, G. Hu, Z. Wei, Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction. J. Power Sources 284, 296–304 (2015)

    Article  CAS  Google Scholar 

  13. C. Jackson, G.T. Smith, D.W. Inwood, A.S. Leach, P.S. Whalley, M. Callisti, T. Polcar, A.E. Russell, P. Levecque, D. Kramer, Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 8, 15802 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P.B. Balbuena, N. Alonso-Vante, Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction. J. Mater. Chem. A 3(22), 11891–11904 (2015)

    Article  CAS  Google Scholar 

  15. T. Wadayama, N. Todoroki, Y. Yamada, T. Sugawara, K. Miyamoto, Y. Iijama, Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Electrochem. Commun. 12(8), 1112–1115 (2010)

    Article  CAS  Google Scholar 

  16. M. Asano, R. Kawamura, R. Sasakawa, N. Todoroki, T. Wadayama, Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: surface strains and direct electronic effects induced by alloying elements. ACS Catal. 6(8), 5285–5289 (2016)

    Article  CAS  Google Scholar 

  17. S. Kaneko, R. Myochi, S. Takahashi, N. Todoroki, T. Wadayama, T. Tanabe, Ultrahigh vacuum synthesis of strain-controlled model Pt(111)-shell layers: surface strain and oxygen reduction reaction activity. J. Phys. Chem. Lett. 8(21), 5360–5365 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. R. Subbaraman, D. Strmcnik, V. Stamenkovic, N.M. Markovic, Three phase interfaces at electrified metal−solid electrolyte systems 1. Study of the Pt(hkl)−Nafion interface. J. Phys. Chem. C 114(18), 8414–8422 (2010)

    Article  CAS  Google Scholar 

  20. M. Wakisaka, S. Morishima, Y. Hyuga, H. Uchida, M. Watanabe, Electrochemical behavior of Pt–Co(111), (100) and (110) alloy single-crystal electrodes in 0.1M HClO4 and 0.05M H2SO4 solution as a function of Co content. Electrochem. Commun. 18, 55–57 (2012)

    Article  CAS  Google Scholar 

  21. S. Kobayashi, M. Wakisaka, D.A. Tryk, A. Iiyama, H. Uchida, J. Phys. Chem. C 121, 11234 (2017)

    Article  CAS  Google Scholar 

  22. T.P. Johansson, E.T. Ulrikkeholm, P. Hernandez-Fernandez, M. Escudero-Escribano, P. Malacrida, I.E.L. Stephens, I. Chorkendorff, Towards the elucidation of the high oxygen electroreduction activity of PtxY: surface science and electrochemical studies of Y/Pt(111). Phys. Chem. Chem. Phys. 16(27), 13718–13725 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. T. Rurigaki, A. Hitotsuyanagi, M. Nakamura, N. Sakai, N. Hoshi, Structural effects on the oxygen reduction reaction on the high index planes of Pt3Ni: n(111)–(111) and n(111)–(100) surfaces. J. Electroanal. Chem. 716, 58–62 (2014)

    Article  CAS  Google Scholar 

  24. X. Wang, Y. Orikasa, Y. Takesue, H. Inoue, M. Nakamura, T. Minato, N. Hoshi, Y. Uchimoto, Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction. J. Am. Chem. Soc. 135(16), 5938–5941 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. E. Toyoda, R. Jinnouchi, T. Hatanaka, Y. Morimoto, K. Mitsuhara, A. Visikovskiy, Y. Kido, The d-band structure of Pt nanoclusters correlated with the catalytic activity for an oxygen reduction reaction. J. Phys. Chem. C 115(43), 21236–21240 (2011)

    Article  CAS  Google Scholar 

  26. S. Dou, L. Tao, R. Wang, S. El Hankari, R. Chen, S. Wang, Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 30(21), 1705850 (2018)

    Article  CAS  Google Scholar 

  27. N. Todoroki, T. Kato, T. Hayashi, S. Takahashi, T. Wadayama, ACS Catal. 2209 (2015)

  28. S. Takahashi, H. Chiba, T. Kato, S. Endo, T. Hayashi, N. Todoroki, T. Wadayama, Oxygen reduction reaction activity and structural stability of Pt–Au nanoparticles prepared by arc-plasma deposition. Phys. Chem. Chem. Phys. 17(28), 18638–18644 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. S. Takahashi, N. Takahashi, N. Todoroki, T. Wadayama, Dealloying of nitrogen-introduced Pt–Co alloy nanoparticles: preferential core–shell formation with enhanced activity for oxygen reduction reaction. ACS Omega 1(6), 1247–1252 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Myochi, T. Nagao, Y. Fugane, S. Takahashi, N. Todoroki, T. Wadayama, Oxygen reduction reaction properties for dry-process synthesized Pt/TaCx nanoparticles. ECS Trans. 86(13), 519–524 (2018)

    Article  CAS  Google Scholar 

  31. S. Takahashi, N. Takahashi, N. Todoroki, T. Tanabe, T. Wadayama, Oxygen reduction reaction activity and durability for Pt/TaNx model catalysts fabricated in ultra-high-vacuum. ECS Trans. 75(14), 821–826 (2016)

    Article  CAS  Google Scholar 

  32. Y. Iijima, Y. Takahashi, K. Matsumoto, T. Hayashi, N. Todoroki, T. Wadayama, Oxygen reduction reaction activities of Pt/Au(111) surfaces prepared by molecular beam epitaxy. J. Electroanal. Chem. 685, 79–85 (2012)

    Article  CAS  Google Scholar 

  33. N. Todoroki, R. Kawamura, M. Asano, R. Sasakawa, S. Takahashi, T. Wadayama, Alloy-composition-dependent oxygen reduction reaction activity and electrochemical stability of Pt-based bimetallic systems: a model electrocatalyst study of Pt/PtxNi100−x(111). Phys. Chem. Chem. Phys. 20(17), 11994 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. S.T. Jackson, R.G. Nuzzo, Determining hybridization differences for amorphous carbon from the XPS C 1s envelope. Appl. Surf. Sci. 90(2), 195–203 (1995)

    Article  CAS  Google Scholar 

  35. R.I.R. Blyth, H. Buqa, F.P. Netzer, M.G. Ramsey, J.O. Besenhard, P. Golob, M. Winter, XPS studies of graphite electrode materials for lithium ion batteries. Appl. Surf. Sci. 167(1-2), 99–106 (2000)

    Article  CAS  Google Scholar 

  36. A. Yanilmaz, A. Tomak, B. Akbali, C. Bacaksiz, E. Ozceri, O. Ari, R.T. Senger, Y. Selamet, H.M. Zareie, Nitrogen doping for facile and effective modification of graphene surfaces. RSC Adv. 7(45), 28383 (2017)

    Article  CAS  Google Scholar 

  37. J. Zhang, Z. Xia, L. Dai, Sci. Adv. 1, 1 (2015)

    Google Scholar 

  38. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. M. Bonelli, A. Miotello, P. Mosaner, C. Casiraghi, P.M. Ossi, J. Appl. Phys. 93, 859 (2002)

    Article  CAS  Google Scholar 

  40. P. Khanra, C.-N. Lee, T. Kuila, N.H. Kim, M.J. Park, J.H. Lee, 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material. Nanoscale 6(9), 4864–4873 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, Carbon corrosion in proton-exchange membrane fuel cells: from model experiments to real-life operation in membrane electrode assemblies. ACS Catal. 4(7), 2258–2267 (2014)

    Article  CAS  Google Scholar 

  43. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8), 1731–1742 (2005)

    Article  CAS  Google Scholar 

  44. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. M. Wakisaka, Y. Hyuga, K. Abe, H. Uchida, M. Watanabe, Facile preparation and electrochemical behavior of Pt100−xCox(111) single-crystal electrodes in 0.1M HClO4. Electrochem. Commun. 13(4), 317–320 (2011)

    Article  CAS  Google Scholar 

  46. B. Genorio, D. Strmcnik, R. Subbaraman, D. Tripkovic, G. Karapetrov, V.R. Stamenkovic, S. Pejovnik, N.M. Marković, Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 9(12), 998–1003 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal. 5(4), 2184–2194 (2015)

    Article  CAS  Google Scholar 

  48. M.f. Li, Q. Tao, L.w. Liao, J. Xu, J. Cai, Y.x. Chen, Oxidation of carbon supports at fuel cell cathodes: differential electrochemical mass spectrometric study. Chin. J. Chem. Phys. 23(4), 442–446 (2010)

    Article  CAS  Google Scholar 

  49. N.M. Marković, R.R. Adžić, B.D. Cahan, E.B. Yeager, Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377(1-2), 249–259 (1994)

    Article  Google Scholar 

  50. A. Björling, J.M. Feliu, Electrochemical surface reordering of Pt(111): a quantification of the place-exchange process. J. Electroanal. Chem. 662(1), 17–24 (2011)

    Article  CAS  Google Scholar 

  51. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2(6), 454–460 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. N.M. Marković, B.N. Grgur, P.N. Ross, Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101(27), 5405–5413 (1997)

    Article  Google Scholar 

  53. D.F. van der Vliet, C. Wang, D. Li, A.P. Paulikas, J. Greeley, R.B. Rankin, D. Strmcnik, D. Tripkovic, N.M. Markovic, V.R. Stamenkovic, Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. 124(13), 3193–3196 (2012)

    Article  Google Scholar 

  54. L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20(35), 7491 (2010)

    Article  CAS  Google Scholar 

  56. F. Hasché, M. Oezaslan, P. Strasser, ChemCatChem 3, 1805 (2011)

    Google Scholar 

Download references

Funding

This study was supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Todoroki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Todoroki, N., Sasakawa, R., Kusunoki, K. et al. Oxygen Reduction Reaction Activity of Nano-Flake Carbon-Deposited Pt75Ni25(111) Surfaces. Electrocatalysis 10, 232–242 (2019). https://doi.org/10.1007/s12678-019-00517-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00517-6

Keywords

  • Oxygen reduction reaction
  • Nano-flake-like carbon
  • Nitrogen-doped carbon
  • Surface modification
  • Pt75Ni25(111)
  • Pt-skin
  • Arc plasma deposition