Abstract
This work investigates the influence of different nitration protocols of a carbon black, the addition of tungsten carbide (WC), and the presence of iron, in terms of the catalytic activity of electrocatalysts containing Fe-Nx moieties towards the oxygen reduction reaction (ORR) in acidic and alkaline media. The synthesized materials were characterized using X-ray diffraction (XRD), Raman spectroscopy (Raman), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) with a rotating ring-disk electrode (RRDE), in addition to durability tests. In acidic media, the performance of the catalysts varied according to the type of nitration protocol, the presence of iron, and the heat treatment temperature, which is accompanied by variations in the ORR mechanism. In alkaline electrolyte, the electrocatalysts presented higher performances, with only an ~0.04-V difference relative to that of a standard platinum on carbon catalyst. The number of electrons transferred per oxygen molecule, the amounts of hydrogen peroxide generated in the ORR, the effect of catalyst loading, and the presence of iron in the catalysts were investigated with the aim of understanding the ORR mechanism and assisting in the production of high-performance and durable materials. Finally, the two best electrocatalysts were submitted to a standard durability test, which evidenced promising high stability at both pHs.
Similar content being viewed by others
References
H. Wang, R. Côté, G. Faubert, D. Guay, J.P. Dodelet, Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen. J. Phys. Chem. B 103(12), 2042–2049 (1999)
T. Schilling, M. Bron, Oxygen reduction at Fe–N-modified multi-walled carbon nanotubes in acidic electrolyte. Electrochim. Acta 53(16), 5379–5385 (2008)
M. Bron, J. Radnik, M. Fieber-erdmann, P. Bogdanoff, S. Fiechter, EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. J. Electrochem. Chem. 535(1-2), 113–119 (2002)
H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim. Acta 55(22), 6450–6461 (2010)
M.S. Shafeeyan, W. Mohd, A. Wan, A. Houshmand, A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 89(2), 143–151 (2010)
M.A. Montes-Morán, D. Suárez, J.A. Menéndeza, E. Fuente, On the nature of basic sites on carbon surfaces: an overview. Carbon N. Y. 42(7), 1219–1225 (2004)
C. . Leon y Leon, J. . Solar, V. . Calemma, and L. . Radovic, Carbon N. Y. 30, 797 (1992), Evidence for the protonation of basal plane sites on carbon, 5, 811
K.B. Bota, M.K. Abotsi, C. Atlanta, Ammonia: a reactive medium for catalysed coal gasification. Fuel 73(8), 1354–1357 (1994)
B. Stohr, H.P. Boehm, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon N. Y. 29(6), 707–720 (1991)
A.C. Garcia, E.A. Ticianelli, Investigation of the oxygen reduction reaction on Pt–WC/C electrocatalysts in alkaline media. Electrochim. Acta 106, 453–459 (2013)
A.M. Gómez-Marín, J.L. Bott-Neto, J.B. Souza, T.L. Silva, W. Beck, L.C. Varanda, E.A. Ticianelli, Electrocatalytic Activity of Different Phases of Molybdenum Carbide/Carbon and Platinum-Molybdenum Carbide/Carbon Composites toward the Oxygen Reduction Reaction. ChemElectroChem 3(10), 1570–1579 (2016)
J.L. Bott-Neto, W. Beck, L.C. Varanda, E.A. Ticianelli, Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction. Int. J. Hydrog. Energy 42(32), 20677–20688 (2017)
V.M. Nikolic, I.M. Perovic, N.M. Gavrilov, I.A. Pašti, A.B. Saponjic, P.J. Vulic, S.D. Karic, B.M. Babic, M.P. Marceta Kaninski, On the tungsten carbide synthesis for PEM fuel cell application – Problems, challenges and advantages. Int. J. Hydrog. Energy 39(21), 11175–11185 (2014)
Y.C. Kimmel, X. Xu, W. Yu, X. Yang, J.G. Chen, Trends in Electrochemical Stability of Transition Metal Carbides and Their Potential Use As Supports for Low-Cost Electrocatalysts. ACS Catal. 4(5), 1558–1562 (2014)
K. Huang, K. Bi, J.C. Xu, C. Liang, S. Lin, W.J. Wang, T.Z. Yang, Y.X. Du, R. Zhang, H.J. Yang, D.Y. Fan, Y.G. Wang, M. Lei, Novel graphite-carbon encased tungsten carbide nanocomposites by solid-state reaction and their ORR electrocatalytic performance in alkaline medium. Electrochim. Acta 174, 172–177 (2015)
U.A. do Rêgo, T. Lopes, J.L. Bott-Neto, A.A. Tanaka, E.A. Ticianelli, Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. J. Electroanal. Chem. 810, 222–231 (2018)
S. Bukola, B. Merzougui, A. Akinpelu, M. Zeama, Cobalt and Nitrogen Co-Doped Tungsten Carbide Catalyst for Oxygen Reduction and Hydrogen Evolution Reactions. Electrochim. Acta 190, 1113–1123 (2016)
J.G. Chen, Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities. Chem. Rev. 96(4), 1477–1498 (1996)
M. Lefèvre, J.P. Dodelet, Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta 48(19), 2749–2760 (2003)
S.H. Liu, J.R. Wu, F.S. Zheng, J.M. Guo, Impact of iron precursors on the properties and activities of carbon-supported Fe-N oxygen reduction catalysts. J. Solid State Electrochem. 19(5), 1381–1391 (2015)
C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53(15), 4937–4951 (2008)
F. Jaouen, J.P. Dodelet, O2Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O2Electroreduction, H2O2Electroreduction, and H2O2Disproportionation. J. Phys. Chem. C 113(34), 15422–15432 (2009)
J.S. Lee, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts I. Synthesis of unsupported powders. J. Catal. 106(1), 125–133 (1987)
P.F. Collins, H. Diehl et al., 2,4,6-Tripyridyl-s-triazine as a reagent iron determination of iron in limestone, silicates and refractories. Anal. Chem. 31, 1862–1866 (1959)
L.G.R.A. Santos, C.H.F. Oliveira, I.R. Moraes, E.A. Ticianelli, Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method. J. Electroanal. Chem. 596(2), 141–148 (2006)
I. Takahashi, S.S. Kocha, Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. J. Power Sources 195(19), 6312–6322 (2010)
T. Ungár, J. Gubicza, G. Ribárik, C. Pantea, T.W. Zerda, Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon N. Y. 40(6), 929–937 (2002)
Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon N. Y. 45(8), 1686–1695 (2007)
T. Denaro, V. Baglio, M. Girolamo, V. Antonucci, A.S. Arico, F. Matteucci, R. Ornelas, Journ Appl. Electrochem 39(11), 2173–2179 (2009)
B.L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 19(17), 2782–2789 (2009)
M.A.P. Almeida, L.S. Cavalcante, C. Morilla-Santos, C.J. Dalmaschio, S. Rajagopal, M.S. Li, E. Longo, Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. CrystEngComm 14(21), 7127 (2012)
K. Jiang, Q. Jia, M. Xu, D. Wu, L. Yang, G. Yang, L. Chen, G. Wang, X. Yang, A novel non-precious metal catalyst synthesized via pyrolysis of polyaniline-coated tungsten carbide particles for oxygen reduction reaction. J. Power Sources 219, 249–252 (2012)
A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56(10), 978–982 (1939)
S. Adhikari, D. Sarkar, H.S. Maiti, Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater. Res. Bull. 49, 325–330 (2014)
Y. Li, C. Guo, J. Li, W. Liao, Z. Li, J. Zhang, C. Chen, Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon N. Y. 119, 201–210 (2017)
L. Cao, Z. Lin, J. Huang, X. Yu, X. Wu, B. Zhang, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Xie, W. Mai, H. Meng, Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 42(2), 876–885 (2017)
T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon N. Y. 33(11), 1561–1565 (1995)
W. Zhang, Y. Xia, J. Ju, Y. Fan, Z. Fang, L. Wang, Z. Wang, Raman analysis of laser annealed nitrogen doped amorphous carbon film. Solid State Commun. 123(3-4), 97–100 (2002)
D. Malko, T. Lopes, E. Symianakis, A.R. Kucernak, The intriguing poison tolerance of non-precious metal oxygen reduction reaction (ORR) catalysts. J. Mater. Chem. A Mater. Energy Sustain. 4(1), 142–152 (2016)
W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L.-J. Wan, S.F. Alvi, L. Li, Angew. Chem. Int. 52(45), 11755–11759 (2013)
J.R. Perls, F. Kapteijn, J.A. Moulijn, Q. Zhu, M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon N. Y. 33(11), 1641–1653 (1995)
I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surf. Sci. 492(3), 315–328 (2001)
J. Liu, P. Song, W. Xu, Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction. Carbon N. Y. 115, 763–772 (2017)
K. Wang, Y. Wang, Y. Tong, Z. Pan, S. Song, A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 8(43), 29356–29364 (2016)
U.I. Koslowski, I. Herrmann, P. Bogdanoff, C. Barkschat, S. Fiechter, N. Iwata, H. Takahashi, H. Nishikori, ECS Trans. 13, 125 (2008)
K. Artyushkova, A. Serov, S. Rojas-Carbonell, P. Atanassov, Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. J. Phys. Chem. C 119(46), 25917–25928 (2015)
T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)
T. Mathew, N.R. Shiju, V.V. Bokade, B.S. Rao, C.S. Gopinath, Selective Catalytic Synthesis of 2-Ethyl Phenol over Cu1-xCoxFe2O4–Kinetics, Catalysis and XPS Aspects. Catal. Letters 94(3/4), 223–236 (2004)
T. Mathew, S. Shylesh, B.M. Devassy, M. Vijayaraj, C.V.V. Satyanarayana, B.S. Rao, C.S. Gopinath, Selective production of orthoalkyl phenols on Cu0.5Co0.5Fe2O4: a study of catalysis and characterization. Appl. Catal. A 273(1-2), 35–45 (2004)
B. Zhang, Z. Lin, J. Huang, L. Cao, X. Wu, X. Yu, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Mai, W. Xie, H. Meng, Highly active and stable non noble metal catalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 42(15), 10423–10434 (2017)
A. Velázquez-Palenzuela, L. Zhang, L. Wang, P.L. Cabot, E. Brillas, K. Tsay, J. Zhang, Carbon-Supported Fe–NxCatalysts Synthesized by Pyrolysis of the Fe(II)–2,3,5,6-Tetra(2-pyridyl)pyrazine Complex: Structure, Electrochemical Properties, and Oxygen Reduction Reaction Activity. J. Phys. Chem. C 115(26), 12929–12940 (2011)
J. Zhang, J. Chen, Y. Jiang, F. Zhou, G. Wang, R. Wang, Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 389, 157–164 (2016)
G.-L. Li, C.-D. Liu, S.-M. Chen, C. Hao, G.-C. Cheng, Y.-Y. Xie, Promotion of oxygen reduction performance by Fe 3 O 4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst. Int. J. Hydrog. Energy 42(7), 4133–4145 (2017)
M.C. Weidman, D.V. Esposito, Y.-C.C. Hsu, J.G. Chen, Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 202, 11–17 (2012)
M.C. Weidman, D.V. Esposito, I.J. Hsu, J.G. Chenz, Electrochemical Stability of Tungsten and Tungsten Monocarbide (WC) Over Wide pH and Potential Ranges. J. Electrochem. Soc. 157(12), F179 (2010)
D. Malko, A. Kucernak, T. Lopes, Performance of Fe–N/C Oxygen Reduction Electrocatalysts toward NO2–, NO, and NH2OH Electroreduction: From Fundamental Insights into the Active Center to a New Method for Environmental Nitrite Destruction. J. Am. Chem. Soc. 138(49), 16056–16068 (2016)
T. Lopes, A. Kucernak, D. Malko, E.A. Ticianelli, Mechanistic Insights into the Oxygen Reduction Reaction on Metal-N-C Electrocatalysts under Fuel Cell Conditions. ChemElectroChem 3(10), 1580–1590 (2016)
C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K.J.J. Mayrhofer, F. Jaouen, Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Fe-N-C Catalysts. Angew. Chemie Int. Ed. 56(30), 8809–8812 (2017)
H. Meng, W. Ouyang, F. Xie, W. Zhang, J. Chen, D. Yuan, J. Electrochem. Soc. 163, 1373 (2016)
P.H. Matter, L. Zhang, U.S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239(1), 83–96 (2006)
T. Lopes, P. Olivi, Non-precious Metal Oxygen Reduction Reaction Catalysts Synthesized Via Cyanuric Chloride and N-Ethylamine. Electrocatalysis 5(4), 396–401 (2014)
A. Jing Liu, Carbon N. Y. 115, 763 (2017)
D. Malko, A. Kucernak, Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe-N/C catalysts under acidic and alkaline conditions. Electrochem. Commun. 83, 67–71 (2017)
D. Banham, S. Ye, Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Lett. 2(3), 629–638 (2017)
Funding
The Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES; process number 1423454) and the Sao Paulo Research Foundation (FAPESP) under process number 2013/16930-7 provided the financial support. T.L. was provided support by the Sao Paulo Research Foundation under projects 14/22130-6 and 17/15304-6 for T.L.’s Young Investigator Award (i.e., research fellowship) and the support of project 2014/09087-4. T.L. was also provided support by the RCGI Research Centre for Gas Innovation, sponsored by FAPESP (2014/50279-4) and Shell.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
ESM 1
(DOCX 770 kb)
Rights and permissions
About this article
Cite this article
do Rêgo, U.A., Lopes, T., Bott-Neto, J.L. et al. Non-Noble Fe-Nx/C Electrocatalysts on Tungsten Carbides/N-Doped Carbons for the Oxygen Reduction Reaction. Electrocatalysis 10, 134–148 (2019). https://doi.org/10.1007/s12678-018-0503-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12678-018-0503-1