Skip to main content

Advertisement

Log in

Non-Noble Fe-Nx/C Electrocatalysts on Tungsten Carbides/N-Doped Carbons for the Oxygen Reduction Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This work investigates the influence of different nitration protocols of a carbon black, the addition of tungsten carbide (WC), and the presence of iron, in terms of the catalytic activity of electrocatalysts containing Fe-Nx moieties towards the oxygen reduction reaction (ORR) in acidic and alkaline media. The synthesized materials were characterized using X-ray diffraction (XRD), Raman spectroscopy (Raman), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) with a rotating ring-disk electrode (RRDE), in addition to durability tests. In acidic media, the performance of the catalysts varied according to the type of nitration protocol, the presence of iron, and the heat treatment temperature, which is accompanied by variations in the ORR mechanism. In alkaline electrolyte, the electrocatalysts presented higher performances, with only an ~0.04-V difference relative to that of a standard platinum on carbon catalyst. The number of electrons transferred per oxygen molecule, the amounts of hydrogen peroxide generated in the ORR, the effect of catalyst loading, and the presence of iron in the catalysts were investigated with the aim of understanding the ORR mechanism and assisting in the production of high-performance and durable materials. Finally, the two best electrocatalysts were submitted to a standard durability test, which evidenced promising high stability at both pHs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Wang, R. Côté, G. Faubert, D. Guay, J.P. Dodelet, Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen. J. Phys. Chem. B 103(12), 2042–2049 (1999)

    Article  CAS  Google Scholar 

  2. T. Schilling, M. Bron, Oxygen reduction at Fe–N-modified multi-walled carbon nanotubes in acidic electrolyte. Electrochim. Acta 53(16), 5379–5385 (2008)

    Article  CAS  Google Scholar 

  3. M. Bron, J. Radnik, M. Fieber-erdmann, P. Bogdanoff, S. Fiechter, EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. J. Electrochem. Chem. 535(1-2), 113–119 (2002)

    Article  CAS  Google Scholar 

  4. H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim. Acta 55(22), 6450–6461 (2010)

    Article  CAS  Google Scholar 

  5. M.S. Shafeeyan, W. Mohd, A. Wan, A. Houshmand, A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 89(2), 143–151 (2010)

    Article  CAS  Google Scholar 

  6. M.A. Montes-Morán, D. Suárez, J.A. Menéndeza, E. Fuente, On the nature of basic sites on carbon surfaces: an overview. Carbon N. Y. 42(7), 1219–1225 (2004)

    Article  Google Scholar 

  7. C. . Leon y Leon, J. . Solar, V. . Calemma, and L. . Radovic, Carbon N. Y. 30, 797 (1992), Evidence for the protonation of basal plane sites on carbon, 5, 811

  8. K.B. Bota, M.K. Abotsi, C. Atlanta, Ammonia: a reactive medium for catalysed coal gasification. Fuel 73(8), 1354–1357 (1994)

    Article  CAS  Google Scholar 

  9. B. Stohr, H.P. Boehm, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon N. Y. 29(6), 707–720 (1991)

    Article  Google Scholar 

  10. A.C. Garcia, E.A. Ticianelli, Investigation of the oxygen reduction reaction on Pt–WC/C electrocatalysts in alkaline media. Electrochim. Acta 106, 453–459 (2013)

    Article  CAS  Google Scholar 

  11. A.M. Gómez-Marín, J.L. Bott-Neto, J.B. Souza, T.L. Silva, W. Beck, L.C. Varanda, E.A. Ticianelli, Electrocatalytic Activity of Different Phases of Molybdenum Carbide/Carbon and Platinum-Molybdenum Carbide/Carbon Composites toward the Oxygen Reduction Reaction. ChemElectroChem 3(10), 1570–1579 (2016)

    Article  Google Scholar 

  12. J.L. Bott-Neto, W. Beck, L.C. Varanda, E.A. Ticianelli, Electrocatalytic activity of platinum nanoparticles supported on different phases of tungsten carbides for the oxygen reduction reaction. Int. J. Hydrog. Energy 42(32), 20677–20688 (2017)

    Article  CAS  Google Scholar 

  13. V.M. Nikolic, I.M. Perovic, N.M. Gavrilov, I.A. Pašti, A.B. Saponjic, P.J. Vulic, S.D. Karic, B.M. Babic, M.P. Marceta Kaninski, On the tungsten carbide synthesis for PEM fuel cell application – Problems, challenges and advantages. Int. J. Hydrog. Energy 39(21), 11175–11185 (2014)

    Article  CAS  Google Scholar 

  14. Y.C. Kimmel, X. Xu, W. Yu, X. Yang, J.G. Chen, Trends in Electrochemical Stability of Transition Metal Carbides and Their Potential Use As Supports for Low-Cost Electrocatalysts. ACS Catal. 4(5), 1558–1562 (2014)

    Article  CAS  Google Scholar 

  15. K. Huang, K. Bi, J.C. Xu, C. Liang, S. Lin, W.J. Wang, T.Z. Yang, Y.X. Du, R. Zhang, H.J. Yang, D.Y. Fan, Y.G. Wang, M. Lei, Novel graphite-carbon encased tungsten carbide nanocomposites by solid-state reaction and their ORR electrocatalytic performance in alkaline medium. Electrochim. Acta 174, 172–177 (2015)

    Article  CAS  Google Scholar 

  16. U.A. do Rêgo, T. Lopes, J.L. Bott-Neto, A.A. Tanaka, E.A. Ticianelli, Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. J. Electroanal. Chem. 810, 222–231 (2018)

    Article  Google Scholar 

  17. S. Bukola, B. Merzougui, A. Akinpelu, M. Zeama, Cobalt and Nitrogen Co-Doped Tungsten Carbide Catalyst for Oxygen Reduction and Hydrogen Evolution Reactions. Electrochim. Acta 190, 1113–1123 (2016)

    Article  CAS  Google Scholar 

  18. J.G. Chen, Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities. Chem. Rev. 96(4), 1477–1498 (1996)

    Article  CAS  Google Scholar 

  19. M. Lefèvre, J.P. Dodelet, Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta 48(19), 2749–2760 (2003)

    Article  Google Scholar 

  20. S.H. Liu, J.R. Wu, F.S. Zheng, J.M. Guo, Impact of iron precursors on the properties and activities of carbon-supported Fe-N oxygen reduction catalysts. J. Solid State Electrochem. 19(5), 1381–1391 (2015)

    Article  CAS  Google Scholar 

  21. C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, E.P. Marques, H. Wang, J. Zhang, A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53(15), 4937–4951 (2008)

    Article  CAS  Google Scholar 

  22. F. Jaouen, J.P. Dodelet, O2Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O2Electroreduction, H2O2Electroreduction, and H2O2Disproportionation. J. Phys. Chem. C 113(34), 15422–15432 (2009)

    Article  CAS  Google Scholar 

  23. J.S. Lee, S.T. Oyama, M. Boudart, Molybdenum carbide catalysts I. Synthesis of unsupported powders. J. Catal. 106(1), 125–133 (1987)

    Article  CAS  Google Scholar 

  24. P.F. Collins, H. Diehl et al., 2,4,6-Tripyridyl-s-triazine as a reagent iron determination of iron in limestone, silicates and refractories. Anal. Chem. 31, 1862–1866 (1959)

  25. L.G.R.A. Santos, C.H.F. Oliveira, I.R. Moraes, E.A. Ticianelli, Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method. J. Electroanal. Chem. 596(2), 141–148 (2006)

    Article  CAS  Google Scholar 

  26. I. Takahashi, S.S. Kocha, Examination of the activity and durability of PEMFC catalysts in liquid electrolytes. J. Power Sources 195(19), 6312–6322 (2010)

    Article  CAS  Google Scholar 

  27. T. Ungár, J. Gubicza, G. Ribárik, C. Pantea, T.W. Zerda, Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon N. Y. 40(6), 929–937 (2002)

    Article  Google Scholar 

  28. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon N. Y. 45(8), 1686–1695 (2007)

    Article  CAS  Google Scholar 

  29. T. Denaro, V. Baglio, M. Girolamo, V. Antonucci, A.S. Arico, F. Matteucci, R. Ornelas, Journ Appl. Electrochem 39(11), 2173–2179 (2009)

    Article  CAS  Google Scholar 

  30. B.L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 19(17), 2782–2789 (2009)

    Article  CAS  Google Scholar 

  31. M.A.P. Almeida, L.S. Cavalcante, C. Morilla-Santos, C.J. Dalmaschio, S. Rajagopal, M.S. Li, E. Longo, Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. CrystEngComm 14(21), 7127 (2012)

    Article  CAS  Google Scholar 

  32. K. Jiang, Q. Jia, M. Xu, D. Wu, L. Yang, G. Yang, L. Chen, G. Wang, X. Yang, A novel non-precious metal catalyst synthesized via pyrolysis of polyaniline-coated tungsten carbide particles for oxygen reduction reaction. J. Power Sources 219, 249–252 (2012)

    Article  CAS  Google Scholar 

  33. A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56(10), 978–982 (1939)

    Article  CAS  Google Scholar 

  34. S. Adhikari, D. Sarkar, H.S. Maiti, Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater. Res. Bull. 49, 325–330 (2014)

    Article  CAS  Google Scholar 

  35. Y. Li, C. Guo, J. Li, W. Liao, Z. Li, J. Zhang, C. Chen, Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon N. Y. 119, 201–210 (2017)

    Article  CAS  Google Scholar 

  36. L. Cao, Z. Lin, J. Huang, X. Yu, X. Wu, B. Zhang, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Xie, W. Mai, H. Meng, Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 42(2), 876–885 (2017)

    Article  CAS  Google Scholar 

  37. T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon N. Y. 33(11), 1561–1565 (1995)

    Article  CAS  Google Scholar 

  38. W. Zhang, Y. Xia, J. Ju, Y. Fan, Z. Fang, L. Wang, Z. Wang, Raman analysis of laser annealed nitrogen doped amorphous carbon film. Solid State Commun. 123(3-4), 97–100 (2002)

    Article  CAS  Google Scholar 

  39. D. Malko, T. Lopes, E. Symianakis, A.R. Kucernak, The intriguing poison tolerance of non-precious metal oxygen reduction reaction (ORR) catalysts. J. Mater. Chem. A Mater. Energy Sustain. 4(1), 142–152 (2016)

    Article  CAS  Google Scholar 

  40. W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L.-J. Wan, S.F. Alvi, L. Li, Angew. Chem. Int. 52(45), 11755–11759 (2013)

    Article  CAS  Google Scholar 

  41. J.R. Perls, F. Kapteijn, J.A. Moulijn, Q. Zhu, M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon N. Y. 33(11), 1641–1653 (1995)

    Article  Google Scholar 

  42. I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surf. Sci. 492(3), 315–328 (2001)

    Article  CAS  Google Scholar 

  43. J. Liu, P. Song, W. Xu, Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction. Carbon N. Y. 115, 763–772 (2017)

    Article  CAS  Google Scholar 

  44. K. Wang, Y. Wang, Y. Tong, Z. Pan, S. Song, A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 8(43), 29356–29364 (2016)

    Article  CAS  Google Scholar 

  45. U.I. Koslowski, I. Herrmann, P. Bogdanoff, C. Barkschat, S. Fiechter, N. Iwata, H. Takahashi, H. Nishikori, ECS Trans. 13, 125 (2008)

    Article  CAS  Google Scholar 

  46. K. Artyushkova, A. Serov, S. Rojas-Carbonell, P. Atanassov, Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. J. Phys. Chem. C 119(46), 25917–25928 (2015)

    Article  CAS  Google Scholar 

  47. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)

    Article  CAS  Google Scholar 

  48. T. Mathew, N.R. Shiju, V.V. Bokade, B.S. Rao, C.S. Gopinath, Selective Catalytic Synthesis of 2-Ethyl Phenol over Cu1-xCoxFe2O4–Kinetics, Catalysis and XPS Aspects. Catal. Letters 94(3/4), 223–236 (2004)

    Article  CAS  Google Scholar 

  49. T. Mathew, S. Shylesh, B.M. Devassy, M. Vijayaraj, C.V.V. Satyanarayana, B.S. Rao, C.S. Gopinath, Selective production of orthoalkyl phenols on Cu0.5Co0.5Fe2O4: a study of catalysis and characterization. Appl. Catal. A 273(1-2), 35–45 (2004)

    Article  CAS  Google Scholar 

  50. B. Zhang, Z. Lin, J. Huang, L. Cao, X. Wu, X. Yu, Y. Zhan, F. Xie, W. Zhang, J. Chen, W. Mai, W. Xie, H. Meng, Highly active and stable non noble metal catalyst for oxygen reduction reaction. Int. J. Hydrog. Energy 42(15), 10423–10434 (2017)

    Article  CAS  Google Scholar 

  51. A. Velázquez-Palenzuela, L. Zhang, L. Wang, P.L. Cabot, E. Brillas, K. Tsay, J. Zhang, Carbon-Supported Fe–NxCatalysts Synthesized by Pyrolysis of the Fe(II)–2,3,5,6-Tetra(2-pyridyl)pyrazine Complex: Structure, Electrochemical Properties, and Oxygen Reduction Reaction Activity. J. Phys. Chem. C 115(26), 12929–12940 (2011)

    Article  Google Scholar 

  52. J. Zhang, J. Chen, Y. Jiang, F. Zhou, G. Wang, R. Wang, Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci. 389, 157–164 (2016)

    Article  CAS  Google Scholar 

  53. G.-L. Li, C.-D. Liu, S.-M. Chen, C. Hao, G.-C. Cheng, Y.-Y. Xie, Promotion of oxygen reduction performance by Fe 3 O 4 nanoparticles support nitrogen-doped three dimensional meso/macroporous carbon based electrocatalyst. Int. J. Hydrog. Energy 42(7), 4133–4145 (2017)

    Article  CAS  Google Scholar 

  54. M.C. Weidman, D.V. Esposito, Y.-C.C. Hsu, J.G. Chen, Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 202, 11–17 (2012)

    Article  CAS  Google Scholar 

  55. M.C. Weidman, D.V. Esposito, I.J. Hsu, J.G. Chenz, Electrochemical Stability of Tungsten and Tungsten Monocarbide (WC) Over Wide pH and Potential Ranges. J. Electrochem. Soc. 157(12), F179 (2010)

    Article  CAS  Google Scholar 

  56. D. Malko, A. Kucernak, T. Lopes, Performance of Fe–N/C Oxygen Reduction Electrocatalysts toward NO2–, NO, and NH2OH Electroreduction: From Fundamental Insights into the Active Center to a New Method for Environmental Nitrite Destruction. J. Am. Chem. Soc. 138(49), 16056–16068 (2016)

    Article  CAS  Google Scholar 

  57. T. Lopes, A. Kucernak, D. Malko, E.A. Ticianelli, Mechanistic Insights into the Oxygen Reduction Reaction on Metal-N-C Electrocatalysts under Fuel Cell Conditions. ChemElectroChem 3(10), 1580–1590 (2016)

    Article  CAS  Google Scholar 

  58. C.H. Choi, W.S. Choi, O. Kasian, A.K. Mechler, M.T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K.J.J. Mayrhofer, F. Jaouen, Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Fe-N-C Catalysts. Angew. Chemie Int. Ed. 56(30), 8809–8812 (2017)

    Article  CAS  Google Scholar 

  59. H. Meng, W. Ouyang, F. Xie, W. Zhang, J. Chen, D. Yuan, J. Electrochem. Soc. 163, 1373 (2016)

    Article  Google Scholar 

  60. P.H. Matter, L. Zhang, U.S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 239(1), 83–96 (2006)

    Article  CAS  Google Scholar 

  61. T. Lopes, P. Olivi, Non-precious Metal Oxygen Reduction Reaction Catalysts Synthesized Via Cyanuric Chloride and N-Ethylamine. Electrocatalysis 5(4), 396–401 (2014)

    Article  CAS  Google Scholar 

  62. A. Jing Liu, Carbon N. Y. 115, 763 (2017)

    Article  Google Scholar 

  63. D. Malko, A. Kucernak, Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe-N/C catalysts under acidic and alkaline conditions. Electrochem. Commun. 83, 67–71 (2017)

    Article  CAS  Google Scholar 

  64. D. Banham, S. Ye, Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Lett. 2(3), 629–638 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES; process number 1423454) and the Sao Paulo Research Foundation (FAPESP) under process number 2013/16930-7 provided the financial support. T.L. was provided support by the Sao Paulo Research Foundation under projects 14/22130-6 and 17/15304-6 for T.L.’s Young Investigator Award (i.e., research fellowship) and the support of project 2014/09087-4. T.L. was also provided support by the RCGI Research Centre for Gas Innovation, sponsored by FAPESP (2014/50279-4) and Shell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Lopes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Rêgo, U.A., Lopes, T., Bott-Neto, J.L. et al. Non-Noble Fe-Nx/C Electrocatalysts on Tungsten Carbides/N-Doped Carbons for the Oxygen Reduction Reaction. Electrocatalysis 10, 134–148 (2019). https://doi.org/10.1007/s12678-018-0503-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0503-1

Keywords

Navigation