Skip to main content
Log in

Hydrogen Treatment as Potential Protection of Electrodeposited Pt, Au, and Pt/Au Oxygen Reduction Catalysts on TiOx

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Methods of protecting Pt(-alloy) particles against dissolution during fuel cell operation have recently gathered attention. Titania as a promising Pt catalyst support has its own built-in protection mechanism, called strong metal-support interaction (SMSI), which leads to encapsulation of metal particles. A high-coverage Pt particle film (approximated layer) with high oxygen reduction activity on the native oxide of metallic titanium has been heat treated in a hydrogen atmosphere. This treatment gave rise to its protection with a thin TiOx layer while Pt particle sintering or the destruction of the Pt structure was avoided. This unique behavior might originate from the structure of this approximate layer; i.e., contiguous patches of TiOx allow fast SMSI/encapsulation of the whole Pt structure before massive sintering or destruction can take place. Although the film was found to be covered by a 5.0 ± 0.1-nm TiOx overlayer, oxygen reduction with a mass activity of 26 ± 4 A gPt−1 could still be observed.

Once layer-like, always layer-like: Heat treatment of a very closely spaced Pt particle film leads to retention of this structure and formation of a TiOx overlayer by the strong metal-support interaction. In contrast, sparsely distributed Pt particles sinter under those conditions. This difference in behavior also has consequences on the oxygen reduction activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. A. Gasteiger, J. Garche, in Handbook of Heterogeneous Catalysis, ed. By (Wiley-VCH Verlag GmbH & Co. KGaA, 2008), p.

  2. P.C.K. Vesborg, T.F. Jaramillo, RSC Adv. 2, 7933 (2012)

    CAS  Google Scholar 

  3. H.A. Gasteiger, N.M. Marković, Science 324, 48 (2009)

    CAS  PubMed  Google Scholar 

  4. A. Kongkanand, M.F. Mathias, J. Phys. Chem. Lett. 7, 1127 (2016)

    CAS  PubMed  Google Scholar 

  5. M.K. Debe, Nature 486, 43 (2012)

    CAS  PubMed  Google Scholar 

  6. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)

    CAS  PubMed  Google Scholar 

  7. I. Harkness, J. Sharman, Fibrous Pt Catalysts Created with ALD-Deposited Pt on Oxide, Carbide or Nitride Surface Tie Layers Where the Pt Deposits Extend over the Surface in Large Contiguous Islands or as Continuous Film, 2014

  8. I. Harkness, J. Sharman, M. Bosund, T. Geppert, H. El-Sayed, H. A. Gasteiger, G. Ercolano, S. Cavaliere, D. Jones, J. Roziere, Demonstration of Pt-Catalysed Non-Carbon Support with Higher Mass Activity than Conventional Pt/C Nanoparticles and in Excess of 0.15 A/Mg Pt, 2014

  9. M.K. Debe, J. Electrochem. Soc. 160, F522 (2013)

    CAS  Google Scholar 

  10. M.K. Debe, ECS Trans. 45, 47 (2012)

    CAS  Google Scholar 

  11. M.K. Debe, R.T. Atanasoski, A.J. Steinbach, ECS Trans. 41, 937 (2011)

    Google Scholar 

  12. G. A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis, Second Edition, (John Wiley & Sons, Inc., 2010), pp.

  13. T. Tanka, K. Hack, T. Iida, S. Hara, Z. Metallkd. 87, 380 (1996)

    Google Scholar 

  14. M. Watanabe, S. Saegusa, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 271, 213 (1989)

    CAS  Google Scholar 

  15. M. Watanabe, H. Sei, P. Stonehart, J. Electroanal. Chem. Interfacial Electrochem. 261, 375 (1989)

    CAS  Google Scholar 

  16. M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12, 919 (2013)

    CAS  PubMed  Google Scholar 

  17. J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, RSC Adv. 4, 14971 (2014)

    CAS  Google Scholar 

  18. J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, M. Bäumer, M. Arenz, Surf. Sci. 631, 278 (2015)

    CAS  Google Scholar 

  19. S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 249 (2016)

    CAS  Google Scholar 

  20. J. Huang, J. Zhang, M.H. Eikerling, J. Phys. Chem. C 121, 4806 (2017)

    CAS  Google Scholar 

  21. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima, N. Iwashita, Chem. Rev. 107, 3904 (2007)

    CAS  PubMed  Google Scholar 

  22. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal. 46, 285 (2007)

    CAS  Google Scholar 

  23. N.R. Elezovic, V.R. Radmilovic, N.V. Krstajic, RSC Adv. 6, 6788 (2016)

    CAS  Google Scholar 

  24. T. Ioroi, Z. Siroma, N. Fujiwara, S.-i. Yamazaki, K. Yasuda, Electrochem. Commun. 7, 183 (2005)

    CAS  Google Scholar 

  25. N.V. Krstajic, L.M. Vracar, V.R. Radmilovic, S.G. Neophytides, M. Labou, J.M. Jaksic, R. Tunold, P. Falaras, M.M. Jaksic, Surf. Sci. 601, 1949 (2007)

    CAS  Google Scholar 

  26. O. Kasian, T. Luk’yanenko, A. Velichenko, R. Amadelli, Int. J. Electrochem. Sci. 7, 7916 (2012)

    Google Scholar 

  27. C. Rüdiger, F. Maglia, S. Leonardi, M. Sachsenhauser, I.D. Sharp, O. Paschos, J. Kunze, Electrochim. Acta 71, 1 (2012)

    Google Scholar 

  28. S. Brimaud, R.J. Behm, J. Am. Chem. Soc. 135, 11716 (2013)

    CAS  PubMed  Google Scholar 

  29. S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, Electrocatalysis 7, 362 (2016)

    CAS  Google Scholar 

  30. J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani, Proc. Natl. Acad. Sci. U. S. A. 111, 45 (2014)

    CAS  PubMed  Google Scholar 

  31. M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochem. Solid-State Lett. 10, F1 (2007)

    CAS  Google Scholar 

  32. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 1564 (2009)

    CAS  PubMed  Google Scholar 

  33. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 9141 (2009)

    CAS  PubMed  Google Scholar 

  34. B.E. Hayden, Acc. Chem. Res. 46, 1858 (2013)

    CAS  PubMed  Google Scholar 

  35. D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, Anal. Chem. 83, 1916 (2011)

    PubMed  Google Scholar 

  36. C.A. Koval, J.N. Howard, Chem. Rev. 92, 411 (1992)

    CAS  Google Scholar 

  37. R.T. Tung, Mater. Sci. Eng., R 35, 1 (2001)

    Google Scholar 

  38. H. Gerischer, Electrochim. Acta 35, 1677 (1990)

    CAS  Google Scholar 

  39. H. Gerischer, in Top. Appl. Phys., ed. By B. O. Seraphin (Springer, Berlin-Heidelberg, 1979), p. 115

  40. S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 451 (2016)

    CAS  Google Scholar 

  41. S. Proch, S. Yoshino, I. Gunjishima, S. Kosaka, N. Takahashi, N. Kato, K. Kodama, Y. Morimoto, Electrocatalysis 8, 351 (2017)

    CAS  Google Scholar 

  42. S. Proch, S. Yoshino, N. Takahashi, S. Kosaka, K. Kodama, Y. Morimoto, Electrocatalysis 8, 480 (2017)

    CAS  Google Scholar 

  43. S. Proch, S. Yoshino, N. Takahashi, J. Seki, S. Kosaka, K. Kodama, Y. Morimoto, Electrocatalysis 9, 608 (2018)

    CAS  Google Scholar 

  44. D.W. Goodman, J. Catal. 216, 213 (2003)

    CAS  Google Scholar 

  45. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 130, 370 (2008)

    CAS  PubMed  Google Scholar 

  46. E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 90, 026101 (2003)

    PubMed  Google Scholar 

  47. B.K. Min, W.T. Wallace, D.W. Goodman, J. Phys. Chem. B 108, 14609 (2004)

    CAS  Google Scholar 

  48. A. Topalov Angel, I. Katsounaros, M. Auinger, S. Cherevko, C. Meier Josef, O. Klemm Sebastian, J.J. Mayrhofer Karl, Angew. Chem. Int. Ed. 51, 12613 (2012)

    CAS  Google Scholar 

  49. A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Chemical Science 5, 631 (2014)

    CAS  Google Scholar 

  50. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)

    CAS  Google Scholar 

  51. F.N. Buechi, T.J. Schmidt, Polymer Electrolyte Fuel Cell Durability (Springer Science + Business Media, LLC., New York, 2009)

    Google Scholar 

  52. D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B.S. Mun, K.-S. Lee, N.-S. Lee, S.J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung, T. Hyeon, J. Am. Chem. Soc. 137, 15478 (2015)

    CAS  PubMed  Google Scholar 

  53. S.J. Tauster, S.C. Fung, R.L. Garten, J. Am. Chem. Soc. 100, 170 (1978)

    CAS  Google Scholar 

  54. O. Dulub, W. Hebenstreit, U. Diebold, Phys. Rev. Lett. 84, 3646 (2000)

    CAS  PubMed  Google Scholar 

  55. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi, ChemSusChem 6, 659 (2013)

    CAS  PubMed  Google Scholar 

  56. K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114, 9385 (2014)

    CAS  PubMed  Google Scholar 

  57. L. Zhang, R. Persaud, T.E. Madey, Physical Review B 56, 10549 (1997)

    CAS  Google Scholar 

  58. T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)

    CAS  Google Scholar 

  59. A.N. Enyashin, A.L. Ivanovskii, Chem. Phys. 362, 58 (2009)

    CAS  Google Scholar 

  60. Y.X. Leng, J.Y. Chen, H. Sun, P. Yang, G.J. Wan, J. Wang, N. Huang, Surf. Coat. Technol. 176, 141 (2004)

    CAS  Google Scholar 

  61. A. Vesel, M. Mozetic, J. Kovac, A. Zalar, Appl. Surf. Sci. 253, 2941 (2006)

    CAS  Google Scholar 

  62. J.M. Chappé, A.C. Fernandes, C. Moura, E. Alves, N.P. Barradas, N. Martin, J.P. Espinós, F. Vaz, Surf. Coat. Technol. 206, 2525 (2012)

    Google Scholar 

  63. Z.H. Lu, J.P. McCaffrey, B. Brar, G.D. Wilk, R.M. Wallace, L.C. Feldman, S.P. Tay, Appl. Phys. Lett. 71, 2764 (1997)

    CAS  Google Scholar 

  64. Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Science 338, 1327 (2012)

    CAS  PubMed  Google Scholar 

  65. H.H. Ku, Journal of Research of the National Bureau of Standards - C. Engineering and Instrumentation 70C, 263 (1966)

    Google Scholar 

  66. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Anal. Chem. 82, 6321 (2010)

    CAS  PubMed  Google Scholar 

  67. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1994)

    CAS  Google Scholar 

  68. H. Inada, D. Su, R.F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall, Y. Zhu, Ultramicroscopy 111, 865 (2011)

    CAS  PubMed  Google Scholar 

  69. G.N. Derry, P.N. Ross, Surf. Sci. 140, 165 (1984)

    CAS  Google Scholar 

  70. L. Calvillo, D. Fittipaldi, C. Rüdiger, S. Agnoli, M. Favaro, C. Valero-Vidal, C. Di Valentin, A. Vittadini, N. Bozzolo, S. Jacomet, L. Gregoratti, J. Kunze-Liebhäuser, G. Pacchioni, G. Granozzi, J. Phys. Chem. C 118, 22601 (2014)

    CAS  Google Scholar 

  71. J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, J. Phys. Chem. C 118, 8462 (2014)

    CAS  Google Scholar 

  72. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, (Physical Electronics, Inc., 1995)

  73. T.L. Barr, S. Seal, J. Vac. Sci. Technol., A 13, 1239 (1995)

    CAS  Google Scholar 

  74. Q. Fu, T. Wagner, S. Olliges, H.-D. Carstanjen, J. Phys. Chem. B 109, 944 (2005)

    CAS  PubMed  Google Scholar 

  75. Q. Fu, T. Wagner, Surf. Sci. Rep. 62, 431 (2007)

    CAS  Google Scholar 

  76. L.A. DuBridge, Physical Review 31, 236 (1928)

    CAS  Google Scholar 

  77. A. Imanishi, E. Tsuji, Y. Nakato, J. Phys. Chem. C 111, 2128 (2007)

    CAS  Google Scholar 

  78. S. Bonanni, K. Aït-Mansour, H. Brune, W. Harbich, ACS Catal. 1, 385 (2011)

    CAS  Google Scholar 

  79. F.C. Walsh, R.G.A. Wills, Electrochim. Acta 55, 6342 (2010)

    CAS  Google Scholar 

  80. M.S. Chen, D.W. Goodman, Science 306, 252 (2004)

    CAS  PubMed  Google Scholar 

  81. M. Chen, D.W. Goodman, Acc. Chem. Res. 39, 739 (2006)

    CAS  PubMed  Google Scholar 

  82. Y.-W. Lee, D.-H. Kwak, A.-R. Park, B. Roh, I. Hwang, G. Cao, K.-W. Park, Int. J. Electrochem. Sci. 8, 9499 (2013)

    CAS  Google Scholar 

  83. P. Dantzer, O.J. Kleppa, M.E. Melnichak, J. Chem. Phys. 64, 139 (1976)

    CAS  Google Scholar 

  84. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions (Marcel Dekker, Inc., New York, 1985)

    Google Scholar 

  85. S.G. Neophytides, K. Murase, S. Zafeiratos, G. Papakonstantinou, F.E. Paloukis, N.V. Krstajic, M.M. Jaksic, J. Phys. Chem. B 110, 3030 (2006)

    CAS  PubMed  Google Scholar 

  86. L.M. Vračar, N.V. Krstajić, V.R. Radmilović, M.M. Jakšić, J. Electroanal. Chem. 587, 99 (2006)

    Google Scholar 

  87. L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Electrochem. Commun. 12, 1772 (2010)

    CAS  Google Scholar 

  88. W. Vogel, L. Timperman, N. Alonso-Vante, Appl. Catal., A 377, 167 (2010)

    CAS  Google Scholar 

  89. L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Electrochim. Acta 55, 7558 (2010)

    CAS  Google Scholar 

  90. G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Nørskov, Catal. Lett. 141, 909 (2011)

    CAS  Google Scholar 

  91. J. Greeley, J. Rossmeisl, A. Hellmann, J.K. Norskov, Z. Phys, Chem. 221, 1209 (2009)

    Google Scholar 

  92. F.J. Perez-Alonso, D.N. McCarthy, A. Nierhoff, P. Hernandez-Fernandez, C. Strebel, I.E.L. Stephens, J.H. Nielsen, I. Chorkendorff, Angew. Chem. Int. Ed. 51, 4641 (2012)

    CAS  Google Scholar 

  93. H. Yano, J. Inukai, H. Uchida, M. Watanabe, P.K. Babu, T. Kobayashi, J.H. Chung, E. Oldfield, A. Wieckowski, Phys. Chem. Chem. Phys. 8, 4932 (2006)

    CAS  PubMed  Google Scholar 

  94. M. Shao, A. Peles, K. Shoemaker, Nano Lett. 11, 3714 (2011)

    CAS  PubMed  Google Scholar 

  95. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal., B 56, 9 (2005)

    CAS  Google Scholar 

  96. K. Shinozaki, Y. Morimoto, B.S. Pivovar, S.S. Kocha, Electrochim. Acta 213, 783 (2016)

    CAS  Google Scholar 

  97. B.B. Blizanac, C.A. Lucas, M.E. Gallagher, M. Arenz, P.N. Ross, N.M. Marković, J. Phys. Chem. B 108, 625 (2004)

    CAS  Google Scholar 

  98. W.S. Baker, J.J. Pietron, M.E. Teliska, P.J. Bouwman, D.E. Ramaker, K.E. Swider-Lyons, J. Electrochem. Soc. 153, A1702 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Proch or Yu Morimoto.

Electronic supplementary material

ESM 1

(DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proch, S., Yoshino, S., Kamitaka, Y. et al. Hydrogen Treatment as Potential Protection of Electrodeposited Pt, Au, and Pt/Au Oxygen Reduction Catalysts on TiOx. Electrocatalysis 10, 1–16 (2019). https://doi.org/10.1007/s12678-018-0489-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0489-8

Keywords

Navigation