Skip to main content
Log in

Conductive Polymer Grafting Platinum Nanoparticles as Efficient Catalysts for the Oxygen Reduction Reaction: Influence of the Polymer Structure

Electrocatalysis Aims and scope Submit manuscript

Cite this article

Abstract

Pt nanoparicles supported on a carbon powder  Pt-NPs/C were synthesized by a polyol method and modified by grafting of different non-fluorinated and fluorinated proton conducting polymers. In the case of fluorinated polymers, the sulfonyl functions were attached either directly or through spacers (-O-PSA and -S-PSA) to the tetrafluorovinylic groups. Results in three-electrode electrochemical cell showed that the nature and structure of the grafted proton-conducting polymer influenced mass transport in the catalytic film towards the oxygen reduction active sites, the limiting current density in the catalytic film decreasing from ca. 97 mA cm−2 for Pt-NPs/C to ca. 80 mA cm−2 for Pt-NPs-(PSSA)/C and less than 60 mA cm−2 for Pt-NPs-(PTFV-O-PSA)/C and Pt-NPs-(PTFV-S-PSA)/C. This influence was directly linked to the hydrophobic character of the polymers. The importance of the spacer on the electrochemicaly active surface area (ECSA), kinetic current density (jk), and mass activity (MA) at 0.9 V was pointed out. The jk at 0.9 V vs RHE increased from 2.8 to 3.6 mA cm−2 for the nanocomposite catalysts without spacer and with a -O-PSA spacer, respectively. However, the best performance was obtained with Pt-NPs-(PSSA)/C with jk = 8.6 mA cm−2 (Pt-NPs/C leading to 4.6 mA cm−2). Fuel cell tests also showed the influence of the grafted polymer on the water management in cathodes. Maximum power density of ca. 1 W cm−2 at ca. 2.1 A cm−2 was obtained with a Pt-NPS-(Nafion)/C cathode and a Pt-NPs-(PSSA)/C cathode without Nafion and ca. 0.85 W cm−2 with a Pt-NPs-(PTFV-O-PSA)/C cathode. Durability under fuel cell working conditions revealed that the presence of the grafted conducting polymers in the cathode catalytic layer led to comparable electrical performances, but to better stabilities of the fuel cell performances than in the case of a classical Pt-NPs-(25 wt% Nafion)/C cathode: the potential losses at 38 °C were two and four times lower with a Pt-NPs-(PTFV-O-PSA)/C (16 μV h−1) cathode than with Pt-NPs-(PSSA)/C (40 μV h−1) and Pt-NPs-(Nafion)/C (80 μV h−1) cathodes, respectively. At 60 °C, the potential loss with a Pt-NPs-(PTFV-O-PSA)/C cathode remained twice lower than with a Pt-NPs-(Nafion)/C cathode.

New architectures of the active layer of fuel cell electrodes for higher fuel cell performance durability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 56(1-2), 9–35 (2005)

    Article  CAS  Google Scholar 

  2. A.J.-J. Kadjo, P. Brault, A. Caillard, C. Coutanceau, J.-P. Garnier, S. Martemianov, Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation. J. Power Sources 172(2), 613–622 (2007)

    Article  CAS  Google Scholar 

  3. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146(10), 3750–3756 (1999)

    Article  CAS  Google Scholar 

  4. C.F. Yu, S. Koh, J.E. Leisch, M.F. Toney, P. Strasser, Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss. 140, 283–296 (2009)

    Article  Google Scholar 

  5. C. Wang, M. Chi, D. Li, D. van der Vliet, G. Wang, Q. Lin, J.F. Mitchell, K.L. More, N.M. Markovic, V.R. Stamenkovic, Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catal. 1(10), 1355–1359 (2011)

    Article  CAS  Google Scholar 

  6. S.D. Lankiang, S. Baranton, C. Coutanceau, Electrocatalytic behavior towards oxygen reduction reaction of carbon-supported PtxMyAuz (M = Ni, Cu, Co) binary and ternary catalysts. Electrochim. Acta 242, 287–299 (2017)

    Article  CAS  Google Scholar 

  7. Y.-N. Wu, S.-J. Liao, Z.-X. Liang, L.-J. Yang, R.-F. Wang, High performance core shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt. J. Power Sources 194(2), 805–810 (2009)

    Article  CAS  Google Scholar 

  8. K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Angew. Chem. Int. Ed. 49(46), 8602–8607 (2010)

    Article  CAS  Google Scholar 

  9. M. Oezaslan, F. Hasché, P. Strasser, Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J. Phys. Chem. Lett. 4(19), 3273–3291 (2013)

    Article  CAS  Google Scholar 

  10. M. Inaba, M. Ando, A. Hatanaka, A. Nomoto, K. Matsuzawa, A. Tasaka, T. Kinumoto, Y. Iriyama, Z. Ogumi, Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim. Acta 52(4), 1632–1638 (2006)

    Article  CAS  Google Scholar 

  11. J. Solla-Gullon, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, A. Aldaz, in Polymer Electrolyte Fuel Cell: Science, Applications, and Challenges, ed. by A. A. Franco. Electrocatalysis on shape-controlled Pt Nanoparticles (CRC press, Boca Raton (FL), 2013), pp. 93–152

    Chapter  Google Scholar 

  12. C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12(8), 765–771 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. L. Dubau, M. Lopez-Haro, J. Durst, L. Guétaz, P. Bayle-Guillemaud, M. Chatenet, F. Maillard, Beyond conventional electrocatalysts: hollow nanoparticles for improved and sustainable oxygen reduction reaction activity. J. Mater. Chem. A 2, 18497–18507 (2014)

    Article  CAS  Google Scholar 

  14. L. Dubau, T. Asset, C. Bonnaud, R. Chattot, V. van Peene, J. Nelayah, F. Maillard, Tuning the performance of hollow nanostructures for the oxygen reduction reaction. ACS Catal. 5(9), 5333–5341 (2015)

    Article  CAS  Google Scholar 

  15. P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, G. Sundholm, Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochim. Acta 48(28), 4175–4187 (2003)

    Article  CAS  Google Scholar 

  16. J.Z. Zhang, K. Hongsirikarn, J.G. Goodwin Jr., Effect and siting of Nafion® in a Pt/C proton exchange membrane fuel cell catalyst. J. Power Sources 196(19), 7957–7966 (2011)

    Article  CAS  Google Scholar 

  17. R. O’Hayre, D.M. Barnett, F.B. Prinz, The triple phase boundary, a mathematical model and experimental investigations for fuel cells. J. Electrochem. Soc. 152(2), A439–A444 (2005)

    Article  CAS  Google Scholar 

  18. P. Berg, A. Novruzi, K. Promislow, Analysis of a cathode catalyst layer model for a polymer electrolyte fuel cell. Chem. Eng. Sci. 61(13), 4316–4331 (2006)

    Article  CAS  Google Scholar 

  19. S.J. Lee, S. Mukerjee, J. Mc Breen, Y.W. Rho, Y.T. Kho, T.H. Lee, Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochim. Acta 43(24), 3693–3701 (1998)

    Article  CAS  Google Scholar 

  20. P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part I. Fundamental scientific aspects. J. Power Sources 102, 242–252 (2001)

    Article  CAS  Google Scholar 

  21. M. Eikerling, A. Korhyshev, A. Kulikovsky, Can theory improve fuel cells? The Fuel Cell Review download.iop.org/fcr/fcr_01_04.pdf 1 (2004/2005). Accessed 5 July 2018

  22. Z. Xia, Q. Wang, M. Eikerling, Z. Liu, Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells. Can. J. Chem. 86(7), 657–667 (2008)

    Article  CAS  Google Scholar 

  23. G. Sasikumar, J.W. Ihm, H. Ryu, Dependence of optimum Nafion content in catalyst layer on platinum loading. J. Power Sources 132(1-2), 11–17 (2004)

    Article  CAS  Google Scholar 

  24. A.–.C. Ferrandez, S. Baranton, J. Bigarré, P. Buvat, C. Coutanceau, Langmuir 28(51), 17832–17840 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. A.–.C. Ferrandez, S. Baranton, J. Bigarré, P. Buvat, C. Coutanceau, Chemical functionalization of carbon supported metal nanoparticles by ionic conductive polymer via the “grafting from” method. Chem. Mater. 25(19), 3797–3807 (2013)

    Article  CAS  Google Scholar 

  26. M. Giersig, P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9(12), 3408–3413 (1993)

    Article  CAS  Google Scholar 

  27. M. Brückner, B. Heinz, H. Morgner, Molecular orientation in organic monolayers probed by UPS and MIES (metastable induced electron spectroscopy). Surf. Sci. 319(3), 370–380 (1994)

    Article  Google Scholar 

  28. T. Laiho, J.A. Leiro, J. Lukkari, XPS study of irradiation damage and different metal–sulfur bonds in dodecanethiol monolayers on gold and platinum surfaces. Appl. Surf. Sci. 212−213, 525–529 (2003)

    Article  CAS  Google Scholar 

  29. F. Raynal, A. Etcheberry, S. Cavaliere, V. Noel, H. Perez, Characterization of the unstability of 4-mercaptoaniline capped platinum nanoparticles solution by combining LB technique and X-ray photoelectron spectroscopy. Appl. Surf. Sci. 252(6), 2422–2431 (2006)

    Article  CAS  Google Scholar 

  30. D. Dru, S. Baranton, J. Bigarré, P. Buvat, C. Coutanceau, Fluorine-free Pt nanocomposites for three-phase interfaces in fuel cell electrodes. ACS Catal. 6(10), 6993–7001 (2016)

    Article  CAS  Google Scholar 

  31. P. Buvat, A. C. Ferrandez, S. Baranton, C. Coutanceau, Method for preparing proton conducting particles capable of catalyzing the reduction of oxygen or the oxidation of hydrogen by grafting proton-conducting polymers to the surface of the particles. World patent WO 2013068319, 2013

  32. P. Buvat, D. Dru, C. Loubat, Q. Crouzet, Procédé de préparation de particules aptes à catalyser la réduction de l’oxygène ou l’oxydation de l’hydrogène conductrices de protons par greffage à leur surface de polymères conducteurs de protons spécifiques; FR1651632 - 2016-02-26, WO2017144686 - 2017-08-31

  33. W. S. Rasband, Image J, US National Institutes of Health, Bethesda, 2009. http://rsbweb.nih.gov/ij/

  34. R. Sellin, J.–.M. Clacens, C. Coutanceau, A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system. Carbon 48(8), 2244–2254 (2010)

    Article  CAS  Google Scholar 

  35. D. Strmcnik, M. Gaberscek, S. Hocevar, J. Jamnik, The effect of halide ion impurities and Nafion on electrooxidation of CO on platinum. Solid State Ionics 176(19-22), 1759–1763 (2005)

    Article  CAS  Google Scholar 

  36. E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, Comparing the thin-film rotating disk electrode and the ultramicroelectrode with cavity techniques to study carbon-supported platinum for proton exchange membrane fuel cell applications. J. Electroanal. Chem. 599(1), 111–120 (2007)

    Article  CAS  Google Scholar 

  37. H. Yano, M. Watanabe, A. Iiyama, H. Uchida, Particle-size effect of Pt cathode catalysts on durability in fuel cells. Nano Energy 29, 323–333 (2016)

    Article  CAS  Google Scholar 

  38. C. Coutanceau, M.J. Croissant, T. Nappron, C. Lamy, Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochim. Acta 46(4), 579–588 (2000)

    Article  CAS  Google Scholar 

  39. C. Grolleau, C. Coutanceau, F. Pierre, J.-M. Léger, Effect of potential cycling on structure and activity of Pt nanoparticles dispersed on different carbon supports. Electrochim. Acta 53(24), 7157–7165 (2008)

    Article  CAS  Google Scholar 

  40. S. Lankiang, M. Chiwata, S. Baranton, H. Uchida, C. Coutanceau, Oxygen reduction reaction at binary and ternary nanocatalysts based on Pt, Pd and Au. Electrochim. Acta 182, 131–142 (2015)

    Article  CAS  Google Scholar 

  41. M. Sakthivel, J.-F. Drillet, An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl. Catal. B: Environmental 231, 62–72 (2018)

    Article  CAS  Google Scholar 

  42. G. Lin, Trung Van Nguyen, Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC, J. Electrochem. Soc. 152 (2005) A1942–A1948, 10

  43. T.J. Mason, J. Millichamp, T.P. Neville, P.R. Shearing, S. Simons, D.J.L. Brett, A study of the effect of water management and electrode flooding on the dimensional change of polymer electrolyte fuel cells. J. Power Sources 242, 70–77 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the ADEME (French Environment and Energy Management Agency) for its financial support through the EXALAME project. Some authors (SB and CC) thank the European communities (FEDER) and the “Région Nouvelle Aquitaine” for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Coutanceau.

Electronic Supplementary Material

ESM 1

(DOCX 3396 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dru, D., Urchaga, P., Frelon, A. et al. Conductive Polymer Grafting Platinum Nanoparticles as Efficient Catalysts for the Oxygen Reduction Reaction: Influence of the Polymer Structure. Electrocatalysis 9, 640–651 (2018). https://doi.org/10.1007/s12678-018-0479-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0479-x

Keywords

Navigation