, Volume 9, Issue 5, pp 608–622 | Cite as

The Native Oxide on Titanium Metal as a Conductive Model Substrate for Oxygen Reduction Reaction Studies

  • Sebastian Proch
  • Shuhei Yoshino
  • Naoko Takahashi
  • Juntaro Seki
  • Satoru Kosaka
  • Kensaku Kodama
  • Yu Morimoto
Original Research


Very thin Pt layers on inexpensive substrates are promising oxygen reduction reaction (ORR) catalysts for polymer electrolyte fuel cells (PEFCs). TiOx is considered a suitable substrate but shows problems with conductivity, thus masking chemical effects by semiconductor effects (mismatch in energy states hindering electron transport). The native oxide on metallic Ti (TiOx/Ti) has been used as a novel and promising model substrate for ORR studies eliminating semiconductor effects. A high-coverage “particle” layer with high specific ORR activity was formed via electrodeposition from Ar-saturated solution. While high specific activities could be demonstrated, the concept could not be enhanced to high mass activities by limiting the Pt deposition amount. The approach to quench Pt deposition by introducing CO failed due to its adsorption to the TiOx/Ti substrate before metal deposition and thus the prevention of layer formation. A similar approach for the Pt/Au codeposition was also unsuccessful manifesting the TiOx/Ti-CO incompatibility even further.

Graphical Abstract

CO, blessing, and curse: Pt deposition from Ar-saturated solution leads to a “film”-like deposit with high specific ORR activity. In contrast, the corresponding CO-saturated solution leads to deposition termination but a smooth monolayer is not formed due to interaction of CO with the TiOx/Ti substrate and, consequently, very low ORR activity is obtained.


Oxygen reduction reaction (ORR) Native oxide on metallic titanium Platinum Gold CO-terminated electrodeposition “proximity” effect 

Supplementary material

12678_2018_465_MOESM1_ESM.docx (1003 kb)
ESM 1 (DOCX 1002kb)


  1. 1.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)CrossRefGoogle Scholar
  2. 2.
    P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933 (2012)CrossRefGoogle Scholar
  3. 3.
    M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012)CrossRefGoogle Scholar
  4. 4.
    D.F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X.F. Zhang, M.K. Debe, R.T. Atanasoski, N.M. Markovic, V.R. Stamenkovic, Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater. 11(12), 1051–1058 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12(10), 919–924 (2013)CrossRefGoogle Scholar
  6. 6.
    I.Harkness, J.Sharman, M.Bosund, T.Geppert, H.El-Sayed, H. A.Gasteiger, G.Ercolano, S.Cavaliere, D.Jones, J. Roziere, Demonstration of Pt-catalysed non-carbon support with higher mass activity than conventional Pt/C nanoparticles and in excess of 0.15 A/Mg Pt, 2014Google Scholar
  7. 7.
    I.Harkness, J.Sharman, Fibrous Pt catalysts created with ALD-deposited Pt on oxide, carbide or nitride surface tie layers where the Pt deposits extend over the surface in large contiguous islands or as continuous film, 2014Google Scholar
  8. 8.
    S.M. Alia, B.A. Larsen, S. Pylypenko, D.A. Cullen, D.R. Diercks, K.C. Neyerlin, S.S. Kocha, B.S. Pivovar, Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts. ACS Catal. 4, 1114–1119 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, CO-Terminated Platinum Electrodeposition on Nb-Doped Bulk Rutile TiO2. Electrocatalysis 7(5), 362–375 (2016)CrossRefGoogle Scholar
  10. 10.
    G. A.Somorjai, Y.Li, Introduction to Surface Chemistry and Catalysis, Second Edition, (John Wiley & Sons, Inc., 2010)Google Scholar
  11. 11.
    S.R. Brankovic, J.X. Wang, R.R. Adžić, Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 474(1-3), L173–L179 (2001)CrossRefGoogle Scholar
  12. 12.
    K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. McBreen, R.R. Adzic, Pt submonolayers on metal nanoparticles—novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim. Acta 48(25-26), 3841–3849 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Self-terminating growth of platinum films by electrochemical deposition. Science 338(6112), 1327–1330 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.-J. Deng, V. Tripkovic, J. Rossmeisl, M. Arenz, Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catal. 6(2), 671–676 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Brimaud, R.J. Behm, Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135(32), 11716–11719 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4(29), 14971 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Speder, L. Altmann, M. Roefzaad, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, Pt based PEMFC catalysts prepared from colloidal particle suspensions—a toolbox for model studies. Phys. Chem. Chem. Phys. 15(10), 3602–3608 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, The “particle proximity effect” in three dimensions: a case study on Vulcan XC 72R. Electrocatalysis 7(3), 249–261 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, M. Bäumer, M. Arenz, From single crystal model catalysts to systematic studies of supported nanoparticles. Surf. Sci. 631, 278–284 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904–3951 (2007)CrossRefGoogle Scholar
  21. 21.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 56(1-2), 9–35 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani, Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proc. Natl. Acad. Sci. U. S. A. 111(1), 45–50 (2014)CrossRefGoogle Scholar
  23. 23.
    A.Michaelis, in Advances in Electrochemical Science and Engineering, ed. By R. C.Alkire, D. M.Kolb, J.Lipkowski,P. N.Ross (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), p. 1Google Scholar
  24. 24.
    N.P. Subramanian, S.P. Kumaraguru, H. Colon-Mercado, H. Kim, B.N. Popov, T. Black, D.A. Chen, Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes. J. Power Sources 157(1), 56–63 (2006)CrossRefGoogle Scholar
  25. 25.
    K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Effect of tin oxides on oxide formation and reduction of platinum particles. Electrochem. Solid-State Lett. 10(1), F1 (2007)CrossRefGoogle Scholar
  27. 27.
    B.E. Hayden, Acc. Chem. Res. 46 (1858, 2013)Google Scholar
  28. 28.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of support and particle size on the platinum catalysed oxygen reduction reaction. Phys. Chem. Chem. Phys. 11(40), 9141–9148 (2009)CrossRefGoogle Scholar
  29. 29.
    D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal. Chem. 83(6), 1916–1923 (2011)CrossRefGoogle Scholar
  30. 30.
    C.A. Koval, J.N. Howard, Electron transfer at semiconductor electrode-liquid electrolyte interfaces. Chem. Rev. 92(3), 411–433 (1992)CrossRefGoogle Scholar
  31. 31.
    C. Kim, S. Kim, J. Choi, J. Lee, J.S. Kang, Y.-E. Sung, J. Lee, W. Choi, J. Yoon, Blue TiO2 nanotube array as an oxidant generating novel anode material fabricated by simple cathodic polarization. Electrochim. Acta 141, 113–119 (2014)CrossRefGoogle Scholar
  32. 32.
    R.T. Tung, Mater. Sci.Eng., R 35, 1 (2001)CrossRefGoogle Scholar
  33. 33.
    H. Gerischer, The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35(11-12), 1677–1699 (1990)CrossRefGoogle Scholar
  34. 34.
    H.Gerischer, in Top. Appl. Phys., ed. By B. O.Seraphin (Springer, Berlin-Heidelberg, 1979), p. 115Google Scholar
  35. 35.
    R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y. Song, J. Kunze, V.-P. Lehto, P. Schmuki, Semimetallic TiO2 nanotubes. Angew. Chem. Int. Ed. 48(39), 7236–7239 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis 7(6), 451–465 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Proch, S. Yoshino, I. Gunjishima, S. Kosaka, N. Takahashi, N. Kato, K. Kodama, Y. Morimoto, Acetylene-treated titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis 8(4), 351–365 (2017)CrossRefGoogle Scholar
  38. 38.
    M.S. Chen, D.W. Goodman, The structure of catalytically active gold on titania. Science 306(5694), 252–255 (2004)CrossRefGoogle Scholar
  39. 39.
    S. Proch, S. Yoshino, N. Takahashi, S. Kosaka, K. Kodama, Y. Morimoto, CO-terminated Pt/Au codeposition on titania nanotube arrays (TNAs). Electrocatalysis 8(5), 480–491 (2017)CrossRefGoogle Scholar
  40. 40.
    D.W. Goodman, Model catalysts: from imagining to imaging a working surface. J. Catal. 216(1-2), 213–222 (2003)CrossRefGoogle Scholar
  41. 41.
    J.W. Schultze, M.M. Lohrengel, Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim. Acta 45(15-16), 2499–2513 (2000)CrossRefGoogle Scholar
  42. 42.
    M.Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions,2 (National Association of Corrosion Engineers, 1974)Google Scholar
  43. 43.
    P. Schmuki, From Bacon to barriers: a review on the passivity of metals and alloys. J. Solid State Electrochem. 6(3), 145–164 (2002)CrossRefGoogle Scholar
  44. 44.
    A.K. Sharma, Anodizing titanium for space applications. Thin Solid Films 208(1), 48–54 (1992)CrossRefGoogle Scholar
  45. 45.
    J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, Fluorine- and niobium-doped TiO2: chemical and spectroscopic properties of polycrystalline n-type-doped anatase. J. Phys. Chem. C 118(16), 8462–8473 (2014)CrossRefGoogle Scholar
  46. 46.
    J. F.Moulder, W. F.Stickle, P. E.Sobol, K. D. Bomben, in Handbook of X-Ray Photoelectron Spectroscopy, (Physical Electronics, Inc., 1995)Google Scholar
  47. 47.
    D.S. Ghosh, Basics of ultrathin metal films and their use as transparent electrodes (Springer International Publishing, Heidelberg, 2013)CrossRefGoogle Scholar
  48. 48.
    Z.H. Lu, J.P. McCaffrey, B. Brar, G.D. Wilk, R.M. Wallace, L.C. Feldman, S.P. Tay, SiO2 film thickness metrology by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 71(19), 2764–2766 (1997)CrossRefGoogle Scholar
  49. 49.
    S. Muhammad Rizwan, H. Seppo, T. Jari, IOP Conf Ser Mater Sci Eng 60, 012008 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82(15), 6321–6328 (2010)CrossRefGoogle Scholar
  51. 51.
    D. Sazou, K. Saltidou, M. Pagitsas, Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochim. Acta 76, 48–61 (2012)CrossRefGoogle Scholar
  52. 52.
    C. Rüdiger, F. Maglia, S. Leonardi, M. Sachsenhauser, I.D. Sharp, O. Paschos, J. Kunze, Surface analytical study of carbothermally reduced titania films for electrocatalysis application. Electrochim. Acta 71, 1–9 (2012)CrossRefGoogle Scholar
  53. 53.
    A. Linsebigler, G. Lu, J.T. Yates, J. Chem. Phys. 103(21), 9438–9443 (1995)CrossRefGoogle Scholar
  54. 54.
    W. Göpel, G. Rocker, R. Feierabend, Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 28(6), 3427–3438 (1983)CrossRefGoogle Scholar
  55. 55.
    G.B. Raupp, J.A. Dumesic, Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states. J. Phys. Chem. 89(24), 5240–5246 (1985)CrossRefGoogle Scholar
  56. 56.
    A. J.Bard, L. R.Faulkner, Electrochemical Methods—Fundamentals and Applications, Second Edition, (John Wiley & Sons, Inc., New York, 2001)Google Scholar
  57. 57.
    X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130(1), 370–381 (2008)CrossRefGoogle Scholar
  58. 58.
    S. Trasatti, O.A. Petrii, Pure Appl. Chem. 63, 711 (1991)CrossRefGoogle Scholar
  59. 59.
    J.C. Calabrese, L.F. Dahl, P. Chini, G. Longoni, S. Martinengo, Synthesis and structural characterization of platinum carbonyl cluster dianions bis, tris, tetrakis, or pentakis ( New series of inorganic oligomers. J. Am. Chem. Soc. 96(8), 2614–2616 (1974)CrossRefGoogle Scholar
  60. 60.
    G. Longoni, P. Chini, Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n = .apprx.10,6,5,4,3,2,1). A new series of inorganic oligomers. J. Am. Chem. Soc. 98(23), 7225–7231 (1976)CrossRefGoogle Scholar
  61. 61.
    H. Inada, D. Su, R.F. Egerton, M. Konno, L. Wu, J. Ciston, J. Wall, Y. Zhu, Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms. Ultramicroscopy 111(7), 865–876 (2011)CrossRefGoogle Scholar
  62. 62.
    G.N. Derry, P.N. Ross, High coverage states of oxygen adsorbed on Pt(100) and Pt(111) surfaces. Surf. Sci. 140(1), 165–180 (1984)CrossRefGoogle Scholar
  63. 63.
    L. Calvillo, D. Fittipaldi, C. Rüdiger, S. Agnoli, M. Favaro, C. Valero-Vidal, C. Di Valentin, A. Vittadini, N. Bozzolo, S. Jacomet, L. Gregoratti, J. Kunze-Liebhäuser, G. Pacchioni, G. Granozzi, Carbothermal transformation of TiO2 into TiOxCy in UHV: tracking intrinsic chemical stabilities. J. Phys. Chem. C 118(39), 22601–22610 (2014)CrossRefGoogle Scholar
  64. 64.
    T.L. Barr, S. Seal, J. Vac, Sci. Technol., A 13, 1239 (1995)Google Scholar
  65. 65.
    E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J.K. Nørskov, F. Besenbacher, Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). Phys. Rev. Lett. 90(2), 026101 (2003)CrossRefGoogle Scholar
  66. 66.
    B.K. Min, W.T. Wallace, D.W. Goodman, Synthesis of a sinter-resistant, mixed-oxide support for Au nanoclusters†. J. Phys. Chem. B 108(38), 14609–14615 (2004)CrossRefGoogle Scholar
  67. 67.
    L.D. Burke, Platin. Met. Rev. 38, 166 (1994)Google Scholar
  68. 68.
    B.B. Blizanac, C.A. Lucas, M.E. Gallagher, M. Arenz, P.N. Ross, N.M. Marković, Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: the pH effect. J. Phys. Chem. B 108(2), 625–634 (2004)CrossRefGoogle Scholar
  69. 69.
    W.S. Baker, J.J. Pietron, M.E. Teliska, P.J. Bouwman, D.E. Ramaker, K.E. Swider-Lyons, Enhanced oxygen reduction activity in acid by tin-oxide supported Au nanoparticle catalysts. J. Electrochem. Soc. 153(9), A1702 (2006)CrossRefGoogle Scholar
  70. 70.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of Pt particle size on the surface oxidation of titania supported platinum. Phys. Chem. Chem. Phys. 11(10), 1564–1570 (2009)CrossRefGoogle Scholar
  71. 71.
    L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Nanostructured platinum becomes alloyed at oxide-composite substrate. Electrochem. Commun. 12(12), 1772–1775 (2010)CrossRefGoogle Scholar
  72. 72.
    W. Vogel, L. Timperman, N. Alonso-Vante, Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl. Catal., A 377(1-2), 167–173 (2010)CrossRefGoogle Scholar
  73. 73.
    L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Substrate effect on oxygen reduction electrocatalysis. Electrochim. Acta 55(26), 7558–7563 (2010)CrossRefGoogle Scholar
  74. 74.
    K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53(7), 3181–3188 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan
  2. 2.Sandvik Materials TechnologyR&D CenterSandvikenSweden

Personalised recommendations