, Volume 9, Issue 4, pp 531–538 | Cite as

Unfolding the Hidden Reactions in Galvanic Cells

  • Tomer Noyhouzer
  • Daphnée Bellemare-Alford
  • Nicholas A. Payne
  • Eric Martineau
  • Janine Mauzeroll
Educational Reviews


The relationship between the potential of the cell reaction (Ecell), the entropy change (ΔS), and the enthalpy change (ΔH) is well established. Yet, there is surprisingly a very narrow range of experimental aqueous galvanic cells that follow thermodynamic predictions. The redox and equilibrium reactions used within Pourbaix diagrams are presented a priori to establish the limitations and application range of thermodynamic relationships within complex electrochemical systems, the Zn-Cu (Daniell cell) and Pb-Cu cells. These are then tested to validate the theoretical discussion. Specifically, the electromotive force of both cells is measured as a function of the temperature in order to calculate the thermodynamic properties of the reaction: concomitantly to the voltage measurements, the temperature, the pH, and the surface state of the electrodes.

Graphical Abstract


Pourbaix diagrams Galvanic cells Corrosion Open circuit potential Thermodynamic measurements 



We also acknowledge Dr. Samuel Perry for manuscript editing.

Author Contributions

All authors have given approval to the final version of the manuscript.

Funding Information

We thank the NSERC, CFI, CSACS, and CQMF for financial support.

Supplementary material

12678_2018_459_MOESM1_ESM.docx (2.1 mb)
ESM 1 The Supporting Information is available free of charge on the Springer Publications website. Scheme of the different cells that were used,the galvanic measurements preformed using the Pb-Cu couple, XPS Oxygen measurements of the Pb substrate, SEM measurements of Pb substrate before and after 90min immersion in Pb(NO)3 solution and the oxygen:lead ratios measured by EDS. (DOCX 2200kb)


  1. 1.
    A.J. Bard, G. Inzelt, F. Scholz, Electrochemical Dictionary (Springer-Verlag, Berlin Heidelberg, 2012), p. 306CrossRefGoogle Scholar
  2. 2.
    A.P. Yadav, A. Nishikata, T. Tsuru, J. Electroanal. Chem. 585(1), 142–149 (2005)CrossRefGoogle Scholar
  3. 3.
    SongC, ZhangJ, InPEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications ed. By ZhangJ. (Springer, London, 2008) pp 89–134Google Scholar
  4. 4.
    A.J. Bard, L.R. Faulkner, in Electrochemical Methods: Fundamentals and Applications, 2nd edn.. Potentials and thermodynamics of cells (Wiley, New-York, 2001), pp. 44–82Google Scholar
  5. 5.
    A.L. Ferguson, K. Lente, R. Hitchens, JACS 54(4), 1285–1290 (1932)CrossRefGoogle Scholar
  6. 6.
    L.J.M. Smits, E.M. Duyvis, J. Phys. Chem. 70(9), 2747–2753 (1996)CrossRefGoogle Scholar
  7. 7.
    A. Sinha, S.N. Bhat, J. Chem. Eng. Data 33(4), 393–394 (1988)CrossRefGoogle Scholar
  8. 8.
    E.P. Purser, R.H. Stokes, JACS 73(12), 5650–5652 (1951)CrossRefGoogle Scholar
  9. 9.
    H.A. Fales, W.C. Vosburgh, JACS 40(9), 1291–1316 (1918)CrossRefGoogle Scholar
  10. 10.
    A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution (Marcel Dekker, New-York, 1985) 1988Google Scholar
  11. 11.
    D.E. Mencer, E.A. Elliot, Chem Educator 5(1), 17–19 (2000)CrossRefGoogle Scholar
  12. 12.
    T. Noyhouzer, I. Valdinger, D. Mandler, Anal. Chem. 85(17), 8347–8353 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    T. Grundl, Chemosphere (3), 613–626 (28, 1994)Google Scholar
  14. 14.
    PourbaixM, Atlas of Electrochemical Equilibria in Aqueous Solutions (trans: Franklin JA). 2nd edn.National Association of Corrosion Engineers, Houston, Texas, 1974)Google Scholar
  15. 15.
    B. Müller, I. Förster, W. Kläger, Prog. Org. Coat. 31(3), 229–233 (1997)CrossRefGoogle Scholar
  16. 16.
    KeilP, Lutzenkirchen-HechtD, FrahmR In X-Ray Absorption Fine Structure-XAFS13 vol 882, ed. By HedmanB, PainettaP (Aip Conference Proceedings ,2007) pp 490–492Google Scholar
  17. 17.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, Calphad 33(2), 295–311 (2009)CrossRefGoogle Scholar
  18. 18.
    R.R. Adžić, A.V. Tripković, N.M. Marković, J. Electroanal. Chem. Interfacial Electrochem. 114(1), 37–51 (1980)CrossRefGoogle Scholar
  19. 19.
    W.N. Perera, G. Hefter, P.M. Sipos, Inorg. Chem. 40(16), 3974–3978 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), pp. 359–362Google Scholar
  21. 21.
    F. Beck, J. Electroanal. Chem. Interfacial Electrochem. 65(1), 231–243 (1975)CrossRefGoogle Scholar
  22. 22.
    M.E. Hyde, R.M.J. Jacobs, R.G. Compton, J. Phys. Chem. B 108(20), 6381–6390 (2004)CrossRefPubMedGoogle Scholar
  23. 23.
    I. Leito, L. Strauss, E. Koort, V. Pihl, Accred. Qual. Assur. 7(6), 242–249 (2002)CrossRefGoogle Scholar
  24. 24.
    W.M.L.D.R. Haynes, CRC Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data (CRC Press, Boca Raton, Florida, 2011)Google Scholar
  25. 25.
    V.I. Nefedov, Y.V. Salyn, P.M. Solozhenkin, G.Y. Pulatov, Surf. Interface Anal. 2, 170–172 (1980)CrossRefGoogle Scholar
  26. 26.
    MoulderJF, ChastainJ. Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. (Physical Electronics Division, Perkin-Elmer Corporation, 1992)Google Scholar
  27. 27.
    M. Whitfield, Limnol. Oceanogr. 14(4), 547–558 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryMcGill UniversityMontrealCanada
  2. 2.Department of ChemistryCollège Jean-de-BrébeufMontrealCanada

Personalised recommendations