Skip to main content

Silver/Nickel Oxide (Ag/NiO) Nanocomposites Produced Via a Citrate Sol-Gel Route as Electrocatalyst for the Oxygen Evolution Reaction (OER) in Alkaline Medium


A series of Ag/NiO nanocomposite electrocatalysts, with a general molecular formula of Ag x Ni1 − xO, was synthesised employing the citrate sol-gel route and tested for the oxygen evolution reaction (OER) in 0.1 M KOH solution. Crystal structure, morphology and stoichiometry of the catalysts were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The face-centred cubic (fcc) crystalline structure of NiO was revealed as being dominant, having an average crystallite size of 9.6 nm. SEM revealed a non-uniform, cotton-like surface for NiO showing aggregation of particles. Crystallinity of the different synthesised compounds decreased as the Ag content increased. The maximum OER activity was observed for pristine NiO, without any Ag additive, requiring an overpotential of only 263 mV to obtain a current density of 10 mA cm−2 at 25 °C. The addition of Ag inhibited the OER electrocatalytic activity, which might be due to Ag oxidation being observed at 1.431 V.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    V. Maruthapandian, T. Pandiarajan, V. Saraswathy, S. Muralidharan, RSC Adv. 6, 48995–49002 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Yang, H. Fei, G. Ruan, L. Li, G. Wang, N.D. Kim, J.M. Tour, ACS Appl. Mater. Interfaces 7, 20607–20611 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Cheng, S.P. Jiang, Progress in Natural Science: Materials International 25, 545–553 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S.L. Suib, J. Am. Chem. Soc. 136, 11452–11464 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    R.B. Moghaddam, C. Wang, J.B. Sorge, M.J. Brett, S.H. Bergens, Electrochem. Commun. 60, 109–112 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    J.A. Bau, E.J. Luber, J.M. Buriak, ACS Appl. Mater. Interfaces 7, 19755–19763 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    R.G. Gonzalez-Huerta, G. Ramos-Sanchez, P.B. Balbuena, J. Power Sources 268, 69–76 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    X. Song, T. Yang, H. Du, W. Dong, Z. Liang, J. Electroanal. Chem. 760, 59–63 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    D.J. Davis, T.N. Lambert, J.A. Vigil, M.A. Rodriguez, M.T. Brumbach, E.N. Coker, S.J. Limmer, J. Phys. Chem. C 118, 17342–17350 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    G. Li, H. Yu, X. Wang, S. Sun, Y. Li, Z. Shao, B. Yi, Phys. Chem. Chem. Phys. 15, 2858–2866 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    G. Liu, J. Xu, Y. Wang, X. Wang, J. Mater. Chem. A 3, 20791–20800 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    L. Trotochaud, S.W. Boettcher, Scr. Mater. 74, 25–32 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    K. Sardar, S.C. Ball, J.D.B. Sharman, D. Thompsett, J.M. Fisher, R.A.P. Smith, P.K. Biswas, M.R. Lees, R.J. Kashtiban, J. Sloan, R.I. Walton, Chem. Mater. 24, 4192–4200 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, ACS Nano 8, 9518–9523 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    J. Ramon, G. Mascaros, Chem. Electro. Chem 2, 37–50 (2015)

    Google Scholar 

  16. 16.

    C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977–16987 (2013)

    CAS  Article  Google Scholar 

  17. 17.

    K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Doblinger, A. Muller, A. Pokharel, S. Bocklein, C. Scheu, T. Bein, D. Fattakhova-Rohlfing, ACS Nano 9, 5180–5188 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    S. Beg, S. Hafeez, N.A.S. Al-Areqi, Solid State Ionics 261, 125–130 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    A.S. Danial, M.M. Saleh, S.A. Salih, M.I. Awad, J. Power Sources 293, 101–108 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    J. Liang, Y.-Z. Wang, C.-C. Wang, S.-Y. Lu, J. Mater. Chem. A 4, 9797–9806 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    L. Shahriary, A.A. Athawale, J. Solid State Electrochem. 19, 2255–2263 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    Y. Ding, Y. Wang, L. Su, H. Zhang, Y. Lei, J. Mater. Chem. 20, 9918–9926 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    T. Audichon, W.T. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh, J. Phys. Chem. C 120, 2562–2573 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    T. Audichon, B. Guenot, S. Baranton, M. Cretin, C. Lamy, C. Coutanceau, Appl. Catal. B Environ. 200, 493–502 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, J. Park, J. Phys. Chem. C 119, 1921–1927 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    H.-Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo, J. Rossmeisl, Phys. Chem. Chem. Phys. 14, 14010–14022 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    G. Liu, X. Gao, K. Wang, D. He, J. Li, Int. J. Hydrog. Energy 41, 17976–17986 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    L.-A. Stern, X. Hu, Faraday Discuss. 176, 363–379 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    N. Cheng, Q. Liu, J. Tian, X. Sun, Y. He, S. Zhai, A.M. Asiri, Int. J. Hydrog. Energy 40, 9866–9871 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    P. Manivasakan, P. Ramasamy, J. Kim, RSC Adv. 5, 33269–33274 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    F. Chekin, H. Tahermansouri, M.R. Besharat, J. Solid State Electrochem. 18, 747–753 (2013)

    Article  Google Scholar 

  32. 32.

    L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, J. Am. Chem. Soc. 134, 17253–17261 (2012)

    CAS  Article  Google Scholar 

  33. 33.

    S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, T.F. Jaramillo, J. Mater. Chem. A 4, 3068–3076 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    J. Ponce, J.-L. Rehspringer, G. Poillerat, J.L. Gautier, Electrochim. Acta 46, 3373–3380 (2001)

    CAS  Article  Google Scholar 

  35. 35.

    W. Song, Z. Ren, S.-Y. Chen, Y. Meng, S. Biswas, P. Nandi, H.A. Elsen, P.-X. Gao, S.L. Suib, ACS Appl. Mater. Interfaces 8, 20802–20813 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    M.B. Stevens, L.J. Enman, A.S. Batchellor, M.R. Cosby, A.E. Vise, C.D.M. Trang, S.W. Boettcher, Chem. Mater. 29, 120–140 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744–6753 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    K.L. Nardi, N. Yang, C.F. Dickens, A.L. Strickler, S.F. Bent, Adv. Energy Mater. 5, 1500412 (2015)

    Article  Google Scholar 

  39. 39.

    B. Mei, A.A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I.E.L. Stephens, P.C.K. Vesborg, B. Seger, I. Chorkendorff, J. Phys. Chem. Lett 5, 3456–3461 (2014)

    CAS  Article  Google Scholar 

Download references


Our thanks and appreciation is extended to Mr. Adam Schnier and Prof. Dave Billing of the Department of Chemistry at the Witwatersrand University for conducting the XRD analysis.

Author information



Corresponding author

Correspondence to R. J. Kriek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.Z., Kriek, R.J. Silver/Nickel Oxide (Ag/NiO) Nanocomposites Produced Via a Citrate Sol-Gel Route as Electrocatalyst for the Oxygen Evolution Reaction (OER) in Alkaline Medium. Electrocatalysis 9, 279–286 (2018).

Download citation


  • Ag/NiO nanocomposite
  • Oxygen evolution reaction
  • Electrocatalyst
  • Citrate sol-gel route