Skip to main content

Advertisement

Log in

Electrochemical Proton Reductions Catalyzed by the Simpler Hexacoordinate Iron Compounds as Functional Mimics of the Active Site in [FeFe] Hydrogenase

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Ligand-substitution reaction of [(μ-S2C4N2H2)Fe2(CO)6] (1) generated a normal mono-substituted diiron dithiolate derivative [(μ-S2C4N2H2)Fe2(CO)5(PMe3)] (1P) and a simpler hexacoordinate mononuclear compound [(μ-S2C4N2H2)Fe([CO)2(PMe3)2] (2) via distinct reactivity pathways under identical conditions. 1P and 2 could act as the electrochemically functional mimics of the [2Fe] sub-cluster and the distal Fe moiety of the active site of [FeFe] hydrogenase. The electrochemical investigations showed that 2 catalyzed the production of hydrogen from weak acid (acetic acid, HOAc) via two catalytic processes with an initial metal-orbital based reduction. In contrast, the electrocatalytic reaction of 2 with stronger acid (trifluoroacetic acid, TFA) occurred via an initial ligand protonation, and proceeded through different pathways that involved distinct oxidation states of the catalyst. The most striking result obtained in this study was that the hydrogen formation by 2 from TFA occurred at a relatively low overpotential as small as −0.28 V. It could be rationalized by the exclusive employment of iron(II) and iron(I) redox levels in the catalytic cycle, which was consistent with the enzymatic process. The observations might shed light on some aspects of ways by which the model compounds catalyzed the reduction of protons.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

References

  1. C. Tard, C.J. Pickett, Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Hydrogenases. Chem. Rev. 114, 4081 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Nicolet, C. Piras, P. Legrand, E.C. Hatchikian, J.C. Fontecilla-Camps, Desulfovibrio desulfuricans Iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. A.L. De Lacey, C. Stadler, C. Cavazza, E.C. Hatchikian, V.M. Fernandez, FTIR characterization of the active site of the Fe-hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 122, 11232 (2000)

    Article  CAS  Google Scholar 

  6. Y. Nicolet, A.L. de Lacey, X. Vernède, V.M. Fernandez, E.C. Hatchikian, J.C. Fontecilla-Camps, Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. G. Berggren, A. Adamska, C. Lambertz, T.R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J.M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave, Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Esselborn, C. Lambertz, A. Adamska-Venkatesh, T. Simmons, G. Berggren, J. Noth, J. Siebel, A. Hemschemeier, V. Artero, E. Reijerse, M. Fontecave, W. Lubitz, T. Happe, Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat. Chem. Biol. 9, 607 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Sommer, A. Adamska-Venkatesh, K. Pawlak, J.A. Birrell, O. Rüdiger, E.J. Reijerse, W. Lubitz, Proton coupled electronic rearrangement within the H-cluster as an essential step in the catalytic cycle of [FeFe] hydrogenases. J. Am. Chem. Soc. 139, 1440 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. W. Lubitz, E. Reijerse, M. van Gastel, [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem. Rev. 107, 4331 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. J.W. Peters, G.J. Schut, E.S. Boyd, D.W. Mulder, E.M. Shepard, J.B. Broderick, P.W. King, M.W.W. Adams, [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1827, 1350 (2013)

    Google Scholar 

  12. J.H. Baricuatro, Y.G. Kim, F.H. Saadi, C.C.L. McCrory, J. Sanabria-Chinchilla, D. Crouthers, M.Y. Darensbourg, M.P. Soriaga, Heterogenization of a water-insoluble molecular complex for catalysis of the proton-reduction reaction in highly acidic aqueous solutions. Electrocatalysis 5, 226 (2014)

    Article  CAS  Google Scholar 

  13. V.V. Khrizanforova, I.R. Knyazeva, V.I.M. Sokolova, I.R. Nizameev, T.V. Gryaznova, M.K. Kadirov, A.R. Burilov, O.G. Sinyashin, Y.H. Budnikova, Nickel complexes based on thiophosphorylated calix[4]resorcinols as effective catalysts for hydrogen evolution. Electrocatalysis 6, 357 (2015)

    Article  CAS  Google Scholar 

  14. T.B. Rauchfuss, Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc. Chem. Res. 48, 2107 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.A. Denny, M.Y. Darensbourg, Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem. Rev. 115, 5248 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. V. Artero, G. Berggren, M. Atta, G. Caserta, S. Roy, L. Pecqueur, M. Fontecave, From enzyme maturation to synthetic chemistry: The case of hydrogenases. Acc. Chem. Res. 48, 2380 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. C. Wombwell, C.A. Caputo, E. Reisner, [NiFeSe]-hydrogenase chemistry. Acc. Chem. Res. 48, 2858 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. T. Xu, D.F. Chen, X.L. Hu, Hydrogen-activating models of hydrogenases. Coord. Chem. Rev. 303, 32 (2015)

    Article  CAS  Google Scholar 

  19. S. Gao, J.L. Fan, S.G. Sun, F.L. Song, X.J. Peng, Q. Duan, D.Y. Jiang, Q.C. Liang, Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: Protonations, molecular structures and electrochemical properties. Dalton Trans. 41, 12064 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. B.E. Barton, T.B. Rauchfuss, Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride. Inorg. Chem. 47, 2261 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Tschierlei, S. Ott, R. Lomoth, Spectroscopically characterized intermediates of catalytic H2 formation by [FeFe] hydrogenase models, energy environ. Sci. 4, 2340 (2011)

    CAS  Google Scholar 

  22. R. Zaffaroni, T.B. Rauchfuss, D.L. Gray, L. De Gioia, G. Zampella, Terminal vs bridging hydrides of diiron dithiolates: Protonation of Fe2(dithiolate)(CO)2(PMe3)4. J. Am. Chem. Soc. 134, 19260 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Schwartz, P.S. Singh, L. Eriksson, R. Lomoth, S. Ott, Tuning the electronic properties of Fe2(μ-arenedithiolate)(CO)6–n(PMe3)n (n = 0, 2) complexes related to the [Fe–Fe]-hydrogenase active site. C. R. Chimie 11, 875 (2008)

    Article  CAS  Google Scholar 

  24. S. Kaur-Ghumaan, L. Schwartz, R. Lomoth, M. Stein, S. Ott, Catalytic hydrogen evolution from mononuclear iron(II) carbonyl complexes as minimal functional models of the [FeFe] hydrogenase active site. Angew. Chem. Int. Ed. 49, 8033 (2010)

    Article  CAS  Google Scholar 

  25. M. Beyler, S. Ezzaher, M. Karnahl, M.P. Santoni, R. Lomoth, S. Ott, Pentacoordinate iron complexes as functional models of the distal iron in [FeFe] hydrogenases. Chem. Commun. 47, 11662 (2011)

    Article  CAS  Google Scholar 

  26. J.M. Gardner, M. Beyler, M. Karnahl, S. Tschierlei, S. Ott, L. Hammarström, Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst co-adsorbed to NiO. J. Am. Chem. Soc. 134, 19322 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. A. Orthaber, M. Karnahl, S. Tschierlei, D. Streich, M. Stein, S. Ott, Coordination and conformational isomers in mononuclear iron complexes with pertinence to the [FeFe] hydrogenase active site. Dalton Trans. 43, 4537 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. S. Roy, S.K.S. Mazinani, T.L. Groy, L. Gan, P. Tarakeshwar, V. Mujica, A.K. Jones, Catalytic hydrogen evolution by Fe(II) carbonyls featuring a dithiolate and a chelating phosphine. Inorg. Chem. 53, 8919 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. M. Natarajan, H. Faujdar, S.M. Mobin, M. Stein, S. Kaur-Ghumaan, A mononuclear iron carbonyl complex [Fe(μ-bdt)(CO)2(PTA)2] with bulky phosphine ligands: A model for the [FeFe] hydrogenase enzyme active site with an inverted redox potential. Dalton Trans. 46, 10050 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. G.A.N. Felton, A.K. Vannucci, J. Chen, L.T. Lockett, N. Okumura, B.J. Petro, U.I. Zakai, D.H. Evans, R.S. Glass, D.L. Lichtenberger, Hydrogen generation from weak acids: Electrochemical and computational studies of a diiron hydrogenase mimic. J. Am. Chem. Soc. 129, 12521 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. K. Izutsu, Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, IUPAC Chemical Data Series No. 35 (Blackwell Scientific Publications, Oxford, 1990)

    Google Scholar 

  32. F. Gloaguen, J.D. Lawrence, M. Schmidt, S.R. Wilson, T.B. Rauchfuss, Synthetic and structural studies on [Fe2(SR)2(CN)x(CO)6–x]x– As active site models for Fe-only hydrogenases. J. Am. Chem. Soc. 123, 12518 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. D. Streich, M. Karnahl, Y. Astuti, C.W. Cady, L. Hammarström, R. Lomoth, S. Ott, Comparing the reactivity of benzenedithiolate- versus alkyldithiolate-bridged Fe2(CO)6 complexes with competing ligands. Eur. J. Inorg. Chem. 2011, 1106 (2011)

    Article  CAS  Google Scholar 

  34. S.J. George, Z. Cui, M. Razavet, C.J. Pickett, The di-iron subsite of all-iron hydrogenase: Mechanism of cyanation of a synthetic {2Fe3S}–carbonyl assembly. Chem. Eur. J. 8, 4037 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. T.B. Rauchfuss, S.M. Contakes, S.C.N. Hsu, M.A. Reynolds, S.R. Wilson, The influence of cyanide on the carbonylation of iron(II): Synthesis of Fe–SR–CN–CO centers related to the hydrogenase active sites. J. Am. Chem. Soc. 123, 6933 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. W.F. Liaw, N.H. Lee, C.H. Chen, C.M. Lee, G.H. Lee, S.M. Peng, Dinuclear and mononuclear iron(II)-thiolate complexes with mixed CO/CN ligands: Synthetic advances for iron sites of [Fe]-only hydrogenases. J. Am. Chem. Soc. 122, 488 (2000)

    Article  CAS  Google Scholar 

  37. J.F. Capon, F. Gloaguen, P. Schollhammer, J. Talarmin, Activation of proton by the two-electron reduction of a di-iron organometallic complex. J. Electroanal. Chem. 595, 47 (2006)

    Article  CAS  Google Scholar 

  38. F. Gloaguen, J.D. Lawrence, T.B. Rauchfuss, Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate. J. Am. Chem. Soc. 123, 9476 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. R. Mejia-Rodriguez, D. Chong, J.H. Reibenspies, M.P. Soriaga, M.Y. Darensbourg, The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: Iron hydrogenase model complexes. J. Am. Chem. Soc. 126, 12004 (2004)

    Article  CAS  PubMed  Google Scholar 

  40. L.C. Song, Z.Y. Yang, H.Z. Bian, Y. Liu, H.T. Wang, X.F. Liu, Q.M. Hu, Diiron oxadithiolate type models for the active site of iron-only hydrogenases and biomimetic hydrogen evolution catalyzed by Fe2(μ-SCH2OCH2S-μ)(CO)6. Organometallics 24, 6126 (2005)

    Article  CAS  Google Scholar 

  41. P. Li, M. Wang, C.J. He, G.H. Li, X.Y. Liu, C.N. Chen, B. Åkermark, L.C. Sun, Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(μ-S2C3H6)Fe2(CO)6–nLn] (L = PMe2Ph, n = 1, 2; PPh3, P(OEt)3, n = 1). Eur. J. Inorg. Chem. 2005, 2506 (2005)

    Article  CAS  Google Scholar 

  42. J. Sanabria-Chinchilla, A. Javier, D. Crouthers, J.H. Baricuatro, M.Y. Darensbourg, M.P. Soriaga, Immobilization-enabled proton reduction catalysis by a di-iron hydrogenase mimic. Electrocatalysis 5, 5 (2014)

    Article  CAS  Google Scholar 

  43. P.S. Singh, H.C. Rudbeck, P. Huang, S. Ezzaher, L. Eriksson, M. Stein, S. Ott, R. Lomoth, (I,0) mixed-valence state of a diiron complex with pertinence to the [FeFe]-hydrogenase active site: An IR, EPR, and computational study. Inorg. Chem. 48, 10883 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. I.A. de Carcer, A. DiPasquale, A.L. Rheingold, D.M. Heinekey, Active-site models for iron hydrogenases: Reduction chemistry of dinuclear iron complexes. Inorg. Chem. 45, 8000 (2006)

    Article  CAS  Google Scholar 

  45. S.P. Best, S.J. Borg, J.M. White, M. Razavet, C.J. Pickett, On the structure of a proposed mixed-valent analogue of the diiron subsite of [FeFe]-hydrogenase. Chem. Commun. 42, 4348 (2007)

    Article  CAS  Google Scholar 

  46. G.F. Qian, H.L. Wang, W. Zhong, X.M. Liu, Electrochemical investigation into the electron transfer mechanism of a diiron hexacarbonyl complex bearing a bridging naphthalene moiety. Electrochim. Acta 163, 190 (2015)

    Article  CAS  Google Scholar 

  47. W. Zhong, Z.Y. Xiao, G.F. Qian, X.M. Liu, The influence of a peripheral functional group of diiron hexacarbonyl complexes on their electrochemistry and electrocatalytic reduction of proton. Electrochim. Acta 247, 779 (2017)

    Article  CAS  Google Scholar 

  48. A.K. Vannucci, S. Wang, G.S. Nichol, D.L. Lichtenberger, D.H. Evans, R.S. Glass, Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of an [FeFe] hydrogenase inspired complex. Dalton Trans. 39, 3050 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. I.K. Pandey, S.M. Mobin, N. Deibel, B. Sarkar, S. Kaur-Ghumaan, Diiron benzenedithiolate complexes relevant to the [FeFe] hydrogenase active site. Eur. J. Inorg. Chem. 2015, 2875 (2015)

    Article  CAS  Google Scholar 

  50. G.A.N. Felton, R.S. Glass, D.L. Lichtenberger, D.H. Evans, Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation. Inorg. Chem. 45, 9181 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. B.E. Barton, M.T. Olsen, T.B. Rauchfuss, Aza- and oxadithiolates are probable proton relays in functional models for the [FeFe]-hydrogenases. J. Am. Chem. Soc. 130, 16834 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ö.F. Erdem, L. Schwartz, M. Stein, A. Silakov, S. Kaur-Ghumaan, P. Huang, S. Ott, E.J. Reijerse, W. Lubitz, A model of the [FeFe] hydrogenase active site with a biologically relevant azadithiolate bridge: A spectroscopic and theoretical investigation. Angew. Chem. Int. Ed. 50, 1439 (2011)

    Article  CAS  Google Scholar 

  53. G.F. Qian, W. Zhong, Z.H. Wei, H.L. Wang, Z.Y. Xiao, L. Long, X.M. Liu, Diiron hexacarbonyl complexes bearing naphthalene-1,8-dithiolate bridge moiety as mimics of the sub-unit of [FeFe]-hydrogenase: Synthesis, characterisation and electrochemical investigations. New J. Chem. 39, 9752 (2015)

    Article  CAS  Google Scholar 

  54. C. Tard, X.-M. Liu, D.L. Hughes, C.J. Pickett, A novel {FeI–FeII–FeII–FeI} iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution. Chem. Commun. 1, 133 (2005)

    Article  Google Scholar 

  55. Z.M. Li, X.H. Zeng, Z.G. Niu, X.M. Liu, Electrocatalytic investigations of a tri-iron cluster towards hydrogen evolution and relevance to [FeFe]-hydrogenase. Electrochim. Acta 54, 3638 (2009)

    Article  CAS  Google Scholar 

  56. S.J. Borg, T. Behrsing, S.P. Best, M. Razavet, X.M. Liu, C.J. Pickett, Electron transfer at a dithiolate-bridged diiron assembly: Electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 126, 16988 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. S.J. Borg, S.K. Ibrahim, C.J. Pickett, S.P. Best, Electrocatalysis of hydrogen evolution by synthetic diiron units using weak acids as the proton source: Pathways of doubtful relevance to enzymic catalysis by the diiron subsite of [FeFe] hydrogenase. C. R. Chimie 11, 852 (2008)

    Article  CAS  Google Scholar 

  58. S. Roy, J.A. Laureanti, T.L. Groy, A.K. Jones, Synthesis and electrocatalytic activity of [FeFe]-hydrogenase model complexes with non-innocent chelating nitrogen-donor ligands. Eur. J. Inorg. Chem. 2017, 2942 (2017)

    Article  CAS  Google Scholar 

  59. F. Quentel, F. Gloaguen, Kinetic and thermodynamic aspects of the electrocatalysis of acid reduction in organic solvent using molecular diiron-dithiolate compounds. Electrochim. Acta 110, 641 (2013)

    Article  CAS  Google Scholar 

  60. J.M. Savéant, Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem. Rev. 108, 2348 (2008)

    Article  CAS  PubMed  Google Scholar 

  61. M.L. Helm, M.P. Stewart, R.M. Bullock, M.R. DuBois, D.L. DuBois, A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  63. G.A.N. Felton, C.A. Mebi, B.J. Petro, A.K. Vannucci, D.H. Evans, R.S. Glass, D.L. Lichtenberger, Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen. J. Organomet. Chem. 694, 2681 (2009)

    Article  CAS  Google Scholar 

  64. I.K. Pandey, M. Natarajan, S. Kaur-Ghumaan, Hydrogen generation: Aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site. J. Inorg. Biochem. 143, 88 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (no. 21201022, 61106050, 61774023), the Specialized Research Fund for the Doctoral Program of Higher Education (New Teachers, no. 20122216120001), the Scientific and Technological “13th Five-Year Plan” Project of Jilin Provincial Department of Education (no. JJKH20170609KJ), and the Scientific and Technological Development Project of Jilin Province (no. 20150311086YY) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Liang, QC., Duan, Q. et al. Electrochemical Proton Reductions Catalyzed by the Simpler Hexacoordinate Iron Compounds as Functional Mimics of the Active Site in [FeFe] Hydrogenase. Electrocatalysis 9, 563–572 (2018). https://doi.org/10.1007/s12678-017-0453-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0453-z

Keywords

Navigation