Skip to main content
Log in

Activity and Stability of Pt/C and Pt-Cu/C Electrocatalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Stability in the course of exploitation and catalytic activity in reactions, taking place on the electrodes, are the most important characteristics of electrocatalysts that determine their application in fuel cells. Relationship of the electrochemical behavior of Pt/C catalysts with their morphology is studied in this article. Negative linear correlation between stability and catalytic activity of Pt/C in the reaction of oxygen electroreduction (ORR) has been established. The procedure for choosing electrocatalysts with the optimal ratio of activity and stability has been proposed. Having used CuxPt/C catalysts as an example, we have shown that bimetallic electrocatalysts, prepared by sequential deposition of copper and platinum, can demonstrate significantly higher activity and stability, compared to Pt/C electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 6321 (2017). https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  2. S. Sui, X. Wang, X. Zhou, S. Yuehong, S. Riffat, C.-j. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5(1808) (2017)

  3. H. Mistry, A.S. Varela, S. Kühl, P. Strasser, B.R. Cuenya, Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1, 16009 (2016). https://doi.org/10.1038/natrevmats.2016.9

    Article  CAS  Google Scholar 

  4. M. Shao et al., Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. N. Jung, D.Y. Chung, J. Ryu, S. JongYoo, Y.-E. Sung, Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 9(433) (2014)

  6. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102 (2014)

    Article  CAS  Google Scholar 

  7. J.O. Bockris, In Electro-Catalysis: Computational, Experimental, and Industrial Aspects, ed. by C.F. Zinola (CRC Press, 2010), p. 42

  8. J.O. M. Bockris, A.K.N. Reddy, M.E. Gamboa-Aldeco, Modern electrochemistry 2A: fundamentals of electrodics, Сh. Electrodics (Springer US, 2000), p. 1035

  9. J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K.J.J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Cherevko, N. Kulyk, K.J.J. Mayrhofer, Durability of platinum-based fuel cell electrocatalysts: dissolution of bulk and nanoscale platinum. Nano Energy 29, 275 (2016)

    Article  CAS  Google Scholar 

  11. Y. Zhang, S. Chen, Y. Wang, W. Ding, R. Wu, L. Li, X. Qi, Z. Wei, Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. J. Power Sources 273, 62 (2015)

    Article  CAS  Google Scholar 

  12. S. Cherevko, G.P. Keeley, S. Geiger, A.R. Zeradjanin, N. Hodnik, N. Kulyk, K.J.J. Mayrhofer, Dissolution of platinum in the operational range of fuel cells. ChemElectroChem 2, 1471 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Su, W. Jia, C.-M. Li, Y. Lei, Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells. ChemSusChem 7, 361 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109(30), 14433 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. E.F. Holby, W. Sheng, Y. Shao-Horn, D. Morgan, Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ. Sci. 2, 865 (2009)

    Article  CAS  Google Scholar 

  16. S.G. Rinaldo, J.R. Stumper, M. Eikerling, Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells. J. Phys. Chem. C 114, 5773 (2010)

    Article  CAS  Google Scholar 

  17. K.F. Blurton, P. Greenberg, H.G. Oswin, D.R. Rutt, The electrochemical activity of dispersed platinum. J. Electrochem. Soc. 119, 559 (1972)

    Article  CAS  Google Scholar 

  18. L.J. Bregoli, The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochim. Acta 23, 489 (1978)

    Article  CAS  Google Scholar 

  19. K. Kinoshita, Electrochemical oxygen technology (Wiley, New York, 1992) 448 p

    Google Scholar 

  20. M. Min, J. Cho, K. Cho, H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45, 4211 (2000)

    Article  CAS  Google Scholar 

  21. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9 (2005)

    Article  CAS  Google Scholar 

  22. E. Antolini, Structural parameters of supported fuel cell catalysts: the effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B Environ. 181, 298 (2016)

    Article  CAS  Google Scholar 

  23. M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. I.N. Leontyev, S.V. Belenov, V.E. Guterman, P. Haghi-Ashtiani, A.P. Shaganov, B. Dkhil, Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. J. Phys. Chem. C 115, 5429 (2011)

    Article  CAS  Google Scholar 

  25. D. Li, C. Wang, D.S. Strmcnik, D.V. Tripkovic, X. Sun, Y. Kang, M. Chi, J.D. Snyder, D.V.D. Vliet, Y. Tsai, V.R. Stamenkovic, S. Sun, N.M. Markovic, Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ. Sci. 7, 4061 (2014)

    Article  CAS  Google Scholar 

  26. S. St. John, A.P. Angelopoulos, In situ analysis of optimum surface atom coordination for Pt nanoparticle oxygen reduction electrocatalysts. Electrochim. Acta 112, 258 (2013)

    Article  CAS  Google Scholar 

  27. S. St. John, I. Dutta, A.P. Angelopoulos, Enhanced electrocatalytic oxygen reduction through electrostatic assembly of Pt nanoparticles onto porous carbon supports from SnCl2-stabilized suspensions. Langmuir 27, 5781 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, A. Daimaru, Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG, ECS Trans. 41, 775 (2011)

  29. Y. Hashimasa, Y. Matsuda, T. Shimizu, Comparison of carbon corrosion test methods for polymer electrolyte fuel cell. Electrochim. Acta 179, 119 (2015)

    Article  CAS  Google Scholar 

  30. G. Polymeros, C. Baldizzone, S. Geiger, J.P. Grote, J. Knossalla, S. Mezzavilla, G.P. Keeley, S. Cherevko, A.R. Zeradjanin, F. Schüth, K.J.J. Mayrhofer, High temperature stability study of carbon supported high surface area catalysts—expanding the boundaries of ex-situ diagnostics. Electrochim. Acta 211, 744 (2016)

    Article  CAS  Google Scholar 

  31. S. Zhang, X. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194, 588 (2009)

    Article  CAS  Google Scholar 

  32. J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104 (2008)

    Article  CAS  Google Scholar 

  33. V.B. Avakov, A.V. Kapustin, I.K. Landgraf, V.A. Bogdanovskaya, O.V. Korchagin, A.V. Kuzov, M.M. Stankevich, M.R. Tarasevich, Lifetime prediction for the hydrogen—air fuel cells. Russ. J. Electrochem. 51, 570 (2015)

  34. I.E.L. Stephens, A.S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744 (2012)

    Article  CAS  Google Scholar 

  35. K.D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin, Y. Xia, Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116, 10414 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. N. Becknell, Y. Kang, C. Chen, J. Resasco, N. Kornienko, J. Guo, N.M. Markovic, G.A. Somorjai, V.R. Stamenkovic, P. Yang, Atomic structure of Pt3Ni nanoframe electrocatalysts by in Situ X-ray absorption spectroscopy. J. Am. Chem. Soc. 137, 15817 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H.L. Xin, J.D. Snyder, D. Li, J.A. Herron, M. Mavrikakis, M. Chi, K.L. More, Y. Li, N.M. Markovic, G.A. Somorjai, P. Yang, V.R. Stamenkovic, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhiqiang, J. Zhang, Z. Liu, J.M. Ziegelbauer, H. Xin, I. Dutta, D.A. Muller, F.T. Wagner, Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells. J. Phys. Chem. C 116, 19877 (2012)

    Article  CAS  Google Scholar 

  39. L. Gan, M. Heggen, R. O’Malley, B. Theobald, P. Strasser, Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. B. Han et al., Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8, 258 (2015)

    Article  CAS  Google Scholar 

  41. D. Wang, Y. Yu, J. Zhu, S. Liu, D.A. Muller, H.D. Abruña, Morphology and activity tuning of Cu3Pt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. Nano Lett. 15, 1343 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. V.V. Pryadchenko, V.V. Srabionyan, S.V. Belenov, V.A. Volochaev, A.A. Kurzin, L.A. Avakyan, I. Zizak, V.E. Guterman, L.A. Bugaev, Bimetallic PtCu core-shell nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization. Appl. Catal. A Gen. 525, 226 (2016)

    Article  CAS  Google Scholar 

  43. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. M. Bele, P. Jovanovič, A. Pavlišič, B. Jozinović, M. Zorko, A. Rečnik, E. Chernyshova, S. Hočevar, N. Hodnik, M. Gaberšček, A highly active PtCu3 intermetallic core–shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol–gel synthesis. Chem. Commun. 50, 13124 (2014)

    Article  CAS  Google Scholar 

  45. A.A. Alekseenko, V.E. Guterman, V.A. Volochaev, S.V. Belenov, Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts. Inorg. Mater. 51, 1258 (2015)

    Article  CAS  Google Scholar 

  46. A.A. Alekseenko, V.E. Guterman, N.Y. Tabachkova, et al., Impact of the atmosphere composition in the process of synthesis on the morphology and electrochemical performance of Pt/C electrocatalysts. J. Solid State Electrochem. 21, 2899 (2017)

    Article  CAS  Google Scholar 

  47. V.E. Guterman, S.V. Belenov, A.Y. Pakharev, M. Min, N.Y. Tabachkova, E.B. Mikheykina, L.L. Vysochina, T.A. Lastovina, Pt-M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles. Int. J. Hydrog. Energy 41, 1609 (2016)

    Article  CAS  Google Scholar 

  48. S.V. Belenov, V.A. Volochaev, V.V. Pryadchenko, V.V. Srabionyan, D.B. Shemet, N.Y. Tabachkova, V.E. Guterman, Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment. Nanotechnol. Russ. 12, 147 (2017)

    Article  CAS  Google Scholar 

  49. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978)

    Article  CAS  Google Scholar 

  50. K. Shinozaki, J.W. Zack, S. Pylypenko, B.S. Pivovar, S.S. Kocha, Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. II. Influence of ink formulation, catalyst layer uniformity and thickness. J. Electrochem. Soc. 162, F1384 (2015)

    Article  CAS  Google Scholar 

  51. V.E. Guterman, A.Y. Pakharev, N.Y. Tabachkova, Microstructure and size effects in Pt/C and Pt3Ni/C electrocatalysts synthesized in solutions based on binary organic solvents. Appl. Catal. A Gen. 453, 113 (2013)

    Article  CAS  Google Scholar 

  52. S. Mukerjee, in Catalysis & Electrocatalysis at Nanoparticle Surfaces, ed. by A. Wieckowski (Marcel Dekker, New York, 2003), p. 501

  53. M. Watanabe, S. Saegusa, P. Stonehart, Electrocatalytic activity on supported platinum crystallites for oxygen reduction in sulphuric acid. Chem. Lett. 17, 1487 (1988)

    Article  Google Scholar 

  54. X. Liu, D. Wang, Y. Li, Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7, 448 (2012)

    Article  CAS  Google Scholar 

  55. H. Yang, Platinum-based electrocatalysts with core–shell nanostructures. Angew. Chem. Int. Ed. 50, 2674 (2011)

    Article  CAS  Google Scholar 

  56. M. Oezaslan, P. Strasser, Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J. Power Sources 196, 5240 (2011)

    Article  CAS  Google Scholar 

  57. M. Oezaslan, F. Hasché, P. Strasser, PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J. Electrochem. Soc. 159, B444 (2012)

    Article  CAS  Google Scholar 

  58. H. Zhu, X. Li, F. Wang, Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchanged membrane fuel cell. Int. J. Hydrog. Energy 36, 9151 (2011)

    Article  CAS  Google Scholar 

  59. S. Koh, N. Hahn, C. Yu, P. Strasser, Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle Electrocatalysts for PEMFC. J. Electrochem. Soc. 155, B1281 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Scientific Foundation (grant No 16-19-10115). The TEM study of the catalysts was carried out in the «Systems for microscopy and analysis» Ltd., Skolkovo, Moscow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Guterman.

Electronic supplementary material

ESM 1

(DOCX 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guterman, V.E., Belenov, S.V., Alekseenko, A.A. et al. Activity and Stability of Pt/C and Pt-Cu/C Electrocatalysts. Electrocatalysis 9, 550–562 (2018). https://doi.org/10.1007/s12678-017-0451-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0451-1

Keywords

Navigation