Skip to main content

Advertisement

Log in

Pt-Ru-NiTiO3 Nanoparticles Dispersed on Vulcan as High Performance Electrocatalysts for the Methanol Oxidation Reaction (MOR)

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

We propose a high performance electrocatalyst based on Pt-Ru-NiTiO3 nanoparticles supported on Vulcan carbon (Pt-Ru-NiTiO3/C) for the methanol oxidation reaction (MOR) in acid medium. The electrocatalyst is prepared from a two-step procedure using a wet chemical method. The morphological studies from TEM indicate that Pt-Ru-NiTiO3 nanoparticles are uniformly distributed on Vulcan carbon. The XRD shows the fcc structure of Pt nanomaterials, while the chemical composition examined using XPS indicates the presence of large fractions of Pt0 and Ru0 species (i.e., metallic state), OH and O2− species are also formed on the surface of the catalyst. The Pt-Ru-NiTiO3/C electrocatalyst exhibits a higher catalytic activity compared to a PtRu/C alloy. Pt-NiTiO3/C is also more active than the alloy. Therefore, on one side, the addition of Ru enhances the MOR through the formation of oxygenated adsorbed species on Ru, which thereby promotes the oxidation of CO to CO2 at more negative potentials (i.e., the bifunctional mechanism). On the other hand, the superior electrocatalytic performance of Pt-Ru-NiTiO3/C is attributed also to the synergistic effects of NiTiO3, which promotes the reaction increasing the current density and shifting the onset potential to even more negative values, suggesting that it also participates in the bifunctional mechanism along with Ru. From the results shown here, Pt-Ru-NiTiO3/C can be a promising anode nanomaterial for direct methanol fuel cells (DMFCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Asif, T. Muneer, Energy supply, its demand and security issues for developed and emerging economies. Renew. Sust. Energ. Rev. 11, 1388–1413 (2007)

    Article  Google Scholar 

  2. U.S. Energy Information Administration, International energy outlook (Report Number: DOE/EIA-0484) (2016) Retrieved from http://www.eia.gov/forecasts/ieo Accessed 30 June 2016

  3. E.H. Yu, U. Krewer, K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3, 1499–1528 (2010)

    Article  CAS  Google Scholar 

  4. T. Wang, C. Lin, F. Ye, Y. Fang, J. Li, X. Wang, MEA with double-layered catalyst cathode to mitigate methanol crossover in DMFC. Electrochem. Commun. 10, 1261–1263 (2008)

    Article  CAS  Google Scholar 

  5. V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221–238 (2007)

    Article  CAS  Google Scholar 

  6. M.G. Hosseini, M. Abdolmaleki, S. Ashrafpoor, Methanol electro-oxidation on a porous nanostructured Ni/Pd-Ni electrode in alkaline media. Chinese J. Catal. 34, 1712–1719 (2013)

    Article  CAS  Google Scholar 

  7. G.S. Chai, S.B. Yoon, J.H. Kim, J.S. Yu, Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell, Chem. Commun. 23, 2766–2767 (2004). https://doi.org/10.1039/B412747C

  8. H. Songa, X. Qiub, X. Lib, F. Lia, W. Zhub, L. Chenb, TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. J. Power Sources 170, 50–54 (2007)

    Article  CAS  Google Scholar 

  9. E. Antolini, Platinum Alloys as Anode Catalysts for Direct Methanol Fuel Cells. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications (Wiley-VCH, Weinheim, 2009), 227–255

  10. S.L. Gojkovic, T.R. Vidakovic, D.R. Durovic, Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst. Electrochim. Acta 48, 3607–3614 (2003)

    Article  CAS  Google Scholar 

  11. T. Frelink, W. Visscher, J.A.R. van Veen, On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf. Sci. 335, 353–360 (1995)

    Article  CAS  Google Scholar 

  12. T. Iwasita, Electrocatalysis of methanol oxidation. Electrochim. Acta 47, 3663–3674 (2002)

    Article  CAS  Google Scholar 

  13. J.B. Goodenough, R. Manoharan, A.K. Shukla, K.V. Ramesh, Intraalloy electron transfer and catalyst performance: a spectroscopic and electrochemical study. Chem. Mater. 1, 391–398 (1989)

    Article  CAS  Google Scholar 

  14. J.B. Goodenough, A. Hamnett, B.J. Kennedy, R. Manoharan, S.A. Weeks, Methanol oxidation on unsupported and carbon supported Pt + Ru anodes. J. Electroanal. Chem. Interfacial Electrochem. 240, 133–145 (1988)

    Article  CAS  Google Scholar 

  15. D. González-Quijano, W.J. Pech-Rodriguez, J.A. González-Quijano, J.I. Escalante-Garcia, G. Vargas-Gutiérrez, I. Alonso-Lemus, F.J. Rodriguez-Varela, Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part II: effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Ru/C anodes. Int. J. Hydrog. Energy 40, 17291–17299 (2015)

    Article  CAS  Google Scholar 

  16. W.J. Pech-Rodríguez, D. González-Quijano, G. Vargas-Gutiérrez, C. Morais, T.W. Napporn, F.J. Rodríguez-Varela, Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B Environ. 203, 654–662 (2017)

    Article  CAS  Google Scholar 

  17. M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60, 267–273 (1975)

    Article  CAS  Google Scholar 

  18. H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, Electro-oxidation of small organic molecules on well-characterized PtRu alloys. Electrochim. Acta 39, 1825–1832 (1994)

    Article  CAS  Google Scholar 

  19. P.J. Kulesza, L.R. Faukner, Electro deposition and characterization of three-dimensional tungsten(VI, V)-oxide films containing spherical Pt microparticles. J. Electrochem. Soc. 136, 707–713 (1989)

    Article  CAS  Google Scholar 

  20. P.J. Kulesza, L.R. Faukner, Electrocatalytic properties of bifunctional Pt/W(VI,V) oxide microstructures electrodeposited on carbon substrates. J. Electroanal. Chem. 259, 81–98 (1989)

    Article  CAS  Google Scholar 

  21. K.S. Lee, I.S. Park, Y.H. Cho, D.S. Jung, N. Jung, H.Y. Park, Y.E. Sung, Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 258, 143–152 (2008)

    Article  CAS  Google Scholar 

  22. H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang, J.H. Chen, Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation. J. Colloid Interface Sci. 319, 193–198 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. M. Hepel, I. Kumarihamy, C.J. Zhong, Nanoporous TiO2-supported bimetallic catalysts for methanol oxidation in acidic media. Electrochem. Commun. 8, 1439–1444 (2006)

    Article  CAS  Google Scholar 

  24. X. Guo, D.J. Guo, X.P. Qiu, L.Q. Chen, W.T. Zhu, Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods. J. Power Sources 194, 281–285 (2009)

    Article  CAS  Google Scholar 

  25. K. Kordesch, G. Simader, Fuel cells and their applications (Wiley-VCH, Weinheim, 1996)

    Book  Google Scholar 

  26. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science New Series 272, 1924–1926 (1996)

    CAS  Google Scholar 

  27. H. Wakayama, N. Setoyama, Y. Fukushima, Size-controlled synthesis and catalytic performance of Pt nanoparticles in micro and mesoporous silica prepared using supercritical solvents. Adv. Mater. 15, 742–745 (2003)

    Article  CAS  Google Scholar 

  28. H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, C.L. Bai, Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew. Chem. 116, 1566–1569 (2004)

    Article  Google Scholar 

  29. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998)

    Article  CAS  Google Scholar 

  30. J.W. Long, R.M. Stroud, K.E. Swider-Lyons, D.R. Rolison, How to make electrocatalysts more active for direct methanol oxidation—avoid PtRu bimetallic alloys! J. Phys. Chem. B 104, 9772–9776 (2000)

    Article  CAS  Google Scholar 

  31. T. Saida, W. Sugimoto, Y. Takasu, Enhanced activity and stability of Pt/C fuel cell anodes by the modification with ruthenium-oxide nanosheets. Electrochim. Acta 55, 857–864 (2010)

    Article  CAS  Google Scholar 

  32. J. Tian, G. Sun, L. Jiang, S. Yan, Q. Mao, Q. Xin, Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochem. Commun. 9, 563–568 (2007)

    Article  CAS  Google Scholar 

  33. Z.X. Liang, T.S. Zhao, J.B. Xu, Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold. J. Power Sources 185, 166–170 (2008)

    Article  CAS  Google Scholar 

  34. J. Chang, L. Feng, C. Liu, W. Xing, Ni2P makes application of the PtRu catalyst much stronger in direct methanol fuel cells. ChemSusChem 8, 3340–3347 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. D.K. Kang, C.S. Noh, N.H. Kim, S.-H. Choc, J.M. Sohn, T.J. Kim, Y.-K. Park, Effect of transition metals (Ni, Sn and Mo) in Pt5Ru4M alloy ternary electrocatalyst on methanol electro-oxidation. J Industrial and Engineering Chem. 16, 385–389 (2010)

    Article  CAS  Google Scholar 

  36. R. Manoharan, J.B. Goodenough, Methanol oxidation in acid on ordered NiTi. J. Mater. Chem. 2, 875–887 (1992)

    Article  CAS  Google Scholar 

  37. Y.J. Lin, Y.H. Changa, G.J. Chen, Y.S. Chang, Y.C. Chang, Effects of Ag-doped NiTiO3 on photoreduction of methylene blue under UV and visible light irradiation. J. Alloys Compd. 479, 785–790 (2009)

    Article  CAS  Google Scholar 

  38. M. Lerch, H. Boysen, R. Nerde, F. Frey, W. Laqua, Neutron scattering investigation of the high temperature phase transition in NiTiO3. J. Phys. Chem. Solids 53, 1153–1156 (1992)

    Article  CAS  Google Scholar 

  39. A. Hernández-Ramírez, M.E. Sánchez-Castro, I. Alonso-Lemus, K.K. Aruna, P. Karthikeyan, R. Manoharan, F.J. Rodríguez-Varela, Evaluation of the nickel titanate-modified Pt nanostructured catalyst for the ORR in alkaline media. J. Electrochem. Soc. 163, 16–24 (2016)

    Article  CAS  Google Scholar 

  40. V. Thiagarajan, R. Manoharan, P. Karthikeyan, E. Nikhila, A. Hernández-Ramírez, F.J. Rodríguez-Varela, Pt nanoparticles supported on NiTiO3/C as electrocatalyst towards high performance Methanol Oxidation Reaction. Int. J. Hydrog. Energy 42, 9795–9805 (2017)

    Article  CAS  Google Scholar 

  41. R. Vijayalakshmi, V. Rajendran, Effect of reaction temperature on size and optical properties of NiTiO3 nanoparticles. E-J. Chem. 9, 282–288 (2012)

    Article  CAS  Google Scholar 

  42. E.V. Spinace, A.O. Neto, T.R.R. Vasconcellos, M. Linardi, Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process. J. Power Sources 137, 17–23 (2004)

    Article  CAS  Google Scholar 

  43. E.V. Spinace, A.O. Neto, T.R.R. Vasconcelos, M. Linardi, Patent BR200304121-A

  44. Z.B. Wang, G.P. Yin, Y.G. Lin, Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell. J. Power Sources 170, 242–250 (2007)

    Article  CAS  Google Scholar 

  45. T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354–2358 (1998)

    Article  CAS  Google Scholar 

  46. M. Ercelik, A. Ozden, E. Seker, C.O. Colpan, Characterization and performance evaluation of Pt-Ru/C-TiO2 anode electrocatalyst for DMFC applications. Int. J. Hydrog. Energy (2016). https://doi.org/10.1016/j.ijhydene.2016.12.020

  47. L. Khotseng, A. Bangisa, R.M. Modibedi, V. Linkov, Electrochemical evaluation of Pt-based binary catalysts on various supports for the direct methanol fuel cell. Electrocatalysis 7, 1–12 (2016)

    Article  CAS  Google Scholar 

  48. Z. Wang, G. Chen, D. Xia, L. Zhang, Studies on the electrocatalytic properties of PtRu/C-TiO2 toward the oxidation of methanol. J. Alloys Compd. 450, 148–151 (2008)

    Article  CAS  Google Scholar 

  49. C.Z. He, H.R. Kunz, J.M. Fenton, Evaluation of platinum based catalysts for methanol electro-oxidation in phosphoric acid electrolyte. J. Electrochem. Soc. 144, 970–979 (1997)

    Article  Google Scholar 

  50. L. Giorgi, A. Pozio, C. Bracchini, R. Giorgi, S. Turtu, H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt-Ru/C electrocatalysts. J. Appl. Electrochem. 31, 325–334 (2001)

    Article  CAS  Google Scholar 

  51. Z. Liu, B. Guo, L. Hong, T.H. Lim, Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochem. Commun. 8, 83–90 (2006)

    Article  CAS  Google Scholar 

  52. J. Wang, J. Xi, Y. Bai, Y. Shen, J. Sun, L. Chen, W. Zhu, X. Qiu, Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. J. Power Sources 164, 555–560 (2007)

    Article  CAS  Google Scholar 

  53. P. Justin, G. Ranga Rao, Enhanced activity of methanol electro-oxidation on Pt-V2O5/C catalysts. Catal. Today 141, 138–143 (2009)

    Article  CAS  Google Scholar 

  54. D.N. Oko, J. Zhang, S. Garbarino, M. Chaker, D. Ma, A.C. Tavares, D. Guay, Formic acid electro-oxidation at PtAu alloyed nanoparticles synthesized by pulsed laser ablation in liquids. J. Power Sources 248, 273–282 (2014)

    Article  CAS  Google Scholar 

  55. T.S. Almeida, L.M. Palma, P.H. Leonello, C. Morais, K.B. Kokoh, A.R. De Andrade, An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts. J. Power Sources 215, 53–62 (2012)

    Article  CAS  Google Scholar 

  56. G.H. An, H.J. Ahn, W.K. Hong, Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers. J. Power Sources 274, 536–541 (2015)

    Article  CAS  Google Scholar 

  57. X. Du, S. Luo, H. Du, M. Tang, X. Huang, P.K. Shen, Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for methanol oxidation reaction. J. Mat. Chem. A 4, 1579–1585 (2016)

    Article  CAS  Google Scholar 

  58. H.L. An, G.H. An, H.J. Ahn, Octahedral Co3O4/carbon nanofiber composite-supported Pt catalysts for improved methanol electrooxidation. J. Alloys Compd. 645, 317–321 (2015)

    Article  CAS  Google Scholar 

  59. F. Liu, J.Y. Lee, W. Zhou, Multisegment of PtRu nanorods: electrocatalysts with adjustable bimetallic pair sites. Adv. Funct. Mater. 15, 1459–1464 (2005)

    Article  CAS  Google Scholar 

  60. N.Y. Hsu, C.C. Chien, K.T. Jeng, Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications. Appl. Catal. B Environ. 84, 196–203 (2008)

    Article  CAS  Google Scholar 

  61. P. Justin, G. Ranga Rao, Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int. J. Hydrog. Energy 36, 5875–5884 (2011)

    Article  CAS  Google Scholar 

  62. A.K. Shukla, A.S. Arico, K.M. El-Khatib, H. Kim, P.L. Antonucci, V. Antonucci, An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons. Appl. Surf. Sci. 137, 20–29 (1999)

    Article  CAS  Google Scholar 

  63. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Praire, 1994)

    Google Scholar 

  64. V.I. Nefedov, E.K. Zhumadilov, L. Baier, Zhurnal Neorganicheskoi Khimii 23, 2113 (1978)

    CAS  Google Scholar 

  65. M. Murata, K. Wakino, S. Ikeda, X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: an example of the effect of polarization on chemical shifts. J. Electron Spectros. Relat. Phenom. 6, 459–464 (1975)

    Article  CAS  Google Scholar 

  66. N.M. Markovic, H.A. Gasteiger, P.N. Ross, Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring disk Pt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996)

    Article  Google Scholar 

  67. R.E. Cid, J.L.G. de la Fuente, S. Rojas, J.L.G. Fierro, P. Ocon, Polypyrrole-modified-carbon-supported Ru-Pt nanoparticles as highly methanol-tolerant electrocatalysts for the oxygen-reduction reaction. ChemCatChem 5, 3680–3689 (2013)

    Article  CAS  Google Scholar 

  68. H.E. Szwarckopf, XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42, 1713–1721 (2004)

    Article  CAS  Google Scholar 

  69. A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubian, E.G. Martínez, F.J. Rodríguez-Varela, Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: significant enhancement in catalytic activity of Pt/C electrocatalyst for the methanol oxidation reaction (MOR). Appl. Catal. B Environ. 209, 455–467 (2017)

    Article  CAS  Google Scholar 

  70. G. Selvarani, A.K. Sahu, N.A. Choudhury, P. Sridhar, S. Pitchumani, A.K. Shukla, A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes. Electrochim. Acta 52, 4871–4277 (2007)

    Article  CAS  Google Scholar 

  71. D.R.M. Godoi, J. Perez, H.M. Villullas, Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J. Phys. Chem. C 113, 8518–8525 (2009)

    Article  CAS  Google Scholar 

  72. D.J. Guo, X.P. Qiu, W.T. Zhu, L.Q. Chen, Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application. Appl. Catal. B Environ. 89, 597–601 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. N. Munichandraiah and Prof. G. Mohan Rao of the Indian Institute of Science, Bengaluru, for their help rendered in the XPS analysis.

Funding

We gratefully acknowledge DST (Nano Mission-SR/NM/NS-1016/2010) and DST-CONACYT (Indo-Mexican Bilateral programme-INT/MEXICO/P14/2012 and grant 252079) for the financial support. This work was also funded through the Project 241526 from CONACYT.

Author information

Authors and Affiliations

Authors

Additional information

Highlights

• Nanostructured Pt-Ru-NiTiO3/C is prepared by a simple wet chemical method.

• Pt-Ru-NiTiO3/C exhibits high catalytic activity for the MOR.

• Pt-Ru-NiTiO3/C shows a high electrochemical stability in acid media.

• The superior catalytic activity is due to the bifunctional mechanism and synergetic effects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiagarajan, V., Karthikeyan, P., Manoharan, R. et al. Pt-Ru-NiTiO3 Nanoparticles Dispersed on Vulcan as High Performance Electrocatalysts for the Methanol Oxidation Reaction (MOR). Electrocatalysis 9, 582–592 (2018). https://doi.org/10.1007/s12678-017-0450-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0450-2

Keywords

Navigation