Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium

Abstract

Unsupported PdxPb1-x electrocatalysts were synthesized by a modified sacrificial support method (SSM) and thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Their electrochemical activity was evaluated for the electrooxidation reactions of ethylene glycol (EGOR) and glycerol (GOR) in alkaline electrolytes, reaching an onset of − 510 mV vs. the normal hydrogen electrode (NHE) for the EGOR and the GOR vs. − 430 mV vs. NHE for the EGOR and the GOR on the Pd-black. Additional mechanistic insights were provided by DFT calculations, showing that the presence of Pb resulted in a stronger binding of the OHads, therefore explaining the enhanced kinetics for the electrooxidation of C2 (ethylene glycol) and C3 (glycerol) alcohol in this environment.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A. Bach Delpeuch, T. Asset, M. Chatenet, C. Cremers, J. Electrochem. Soc. 161, F918–F924 (2014)

    Article  CAS  Google Scholar 

  2. 2.

    A. Bach Delpeuch, T. Asset, M. Chatenet, C. Cremers, Fuel Cells 15, 352–360 (2015)

    Article  CAS  Google Scholar 

  3. 3.

    C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Léger, J. Power Sources 105, 283–296 (2002)

    Article  CAS  Google Scholar 

  4. 4.

    A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrochim. Acta 66, 295–301 (2012)

    Article  CAS  Google Scholar 

  5. 5.

    L. Demarconnay, S. Brimaud, C. Coutanceau, J.-M.M. Léger, J. Electroanal. Chem. 601, 169–180 (2007)

    Article  CAS  Google Scholar 

  6. 6.

    A.O. Neto, T.R.R. Vasconcelos, R.W.R.V. Da Silva, M. Linardi, E.V. Spinacé, J. Appl. Electrochem. 35, 193–198 (2005)

    Article  CAS  Google Scholar 

  7. 7.

    Y. Kwon, T.J.P. Hersbach, M.T.M. Koper, Top. Catal. 57, 1272–1276 (2014)

    Article  CAS  Google Scholar 

  8. 8.

    S. Zhang, Y. Shao, G. Yin, Y. Lin, J. Mater. Chem. A 1, 4631–4641 (2013)

    Article  CAS  Google Scholar 

  9. 9.

    X. Zhou, Y. Gan, J. Du, D. Tian, R. Zhang, C. Yang, Z. Dai, J. Power Sources 232, 310–322 (2013)

    Article  CAS  Google Scholar 

  10. 10.

    M. Oezaslan, F. Hasché, P. Strasser, J. Phys. Chem. Lett. 4, 3273–3291 (2013)

    Article  CAS  Google Scholar 

  11. 11.

    M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D.R. Dekel, D. Zitoun, J. Power Sources 304, 332–339 (2016)

    Article  CAS  Google Scholar 

  12. 12.

    H.A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di Benedetto, F. D’Acapito, Y. Paska, M. Page, D.R. Dekel, Angew. Chem. Int. Ed. 55, 6004–6007 (2016)

    Article  CAS  Google Scholar 

  13. 13.

    A. Baldi, T.C. Narayan, A.L. Koh, J.A. Dionne, Nat. Mater. 13, 1143–1148 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    S. Syrenova, C. Wadell, F.A.A. Nugroho, T.A. Gschneidtner, Y.A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T.J. Antosiewicz, V.P. Zhdanov, K. Moth-Poulsen, C. Langhammer, Nat. Mater. 14, 1236–1244 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Sci. Adv. 3, e1600542 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P. Atanassov, J. Am. Chem. Soc. 136, 3937–3945 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P. Atanassov, Electrochem. Commun. 57, 48–51 (2015)

    Article  CAS  Google Scholar 

  18. 18.

    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P.B. Atanassov, Appl. Catal. B Environ. 176–177, 429–435 (2015)

    Article  CAS  Google Scholar 

  19. 19.

    A. Serov, U. Martinez, A. Falase, P. Atanassov, Electrochem. Commun. 22, 193–196 (2012)

    Article  CAS  Google Scholar 

  20. 20.

    A. Serov, U. Martinez, P. Atanassov, Electrochem. Commun. 34, 185–188 (2013)

    Article  CAS  Google Scholar 

  21. 21.

    E. Antolini, Energy Environ. Sci. 2, 915 (2009)

    Article  CAS  Google Scholar 

  22. 22.

    A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, ACS Catal. 5, 4819–4824 (2015)

    Article  CAS  Google Scholar 

  23. 23.

    A. Zadick, L. Dubau, M. Chatenet, U. Demirci, A. Serov, P. Atanassov, ECS Trans. 69, 553–558 (2015)

    Article  CAS  Google Scholar 

  24. 24.

    A. Zadick, L. Dubau, U.B. Demirci, M. Chatenet, J. Electrochem. Soc. 163, F781–F787 (2016)

    Article  CAS  Google Scholar 

  25. 25.

    P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 152, A2256–A2271 (2005)

    Article  Google Scholar 

  26. 26.

    A. Serov, A. Aziznia, P.H. Benhangi, K. Artyushkova, P. Atanassov, E. Gyenge, J. Mater. Chem. A 1, 14384 (2013)

    Article  CAS  Google Scholar 

  27. 27.

    U. Martinez, A. Serov, M. Padilla, P. Atanassov, ChemSusChem 7, 2351–2357 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    N.I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B Environ. 163, 623–627 (2015)

    Article  CAS  Google Scholar 

  29. 29.

    A. Serov, M. Padilla, A.J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, H. Tanaka, Angew. Chem. Int. Ed. 53, 10336–10339 (2014)

    Article  CAS  Google Scholar 

  30. 30.

    U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, J. Phys. Chem. C 118, 8999–9008 (2014)

    Article  CAS  Google Scholar 

  31. 31.

    A. Serov, K. Artyushkova, P. Atanassov, Adv. Energy Mater. 4, 1–7 (2014)

    Article  CAS  Google Scholar 

  32. 32.

    S. Brocato, A. Serov, P. Atanassov, Electrochim. Acta 87, 361–365 (2013)

    Article  CAS  Google Scholar 

  33. 33.

    A. Serov, M.H. Robson, K. Artyushkova, P. Atanassov, Appl. Catal. B Environ. 127, 300–306 (2012)

    Article  CAS  Google Scholar 

  34. 34.

    J. Noborikawa, J. Lau, J. Ta, S. Hu, L. Scudiero, S. Derakhshan, S. Ha, J.L. Haan, Electrochim. Acta 137, 654–660 (2014)

    Article  CAS  Google Scholar 

  35. 35.

    A. Serov, T. Asset, M. Padilla, I. Matanovic, U. Martinez, A. Roy, K. Artyushkova, M. Chatenet, F. Maillard, D. Bayer, C. Cremers, P. Atanassov, Appl. Catal. B Environ. 191, 76–85 (2016)

    Article  CAS  Google Scholar 

  36. 36.

    R. Awasthi, R.N. Singh, Int. J. Hydrog. Energy 37, 2103–2110 (2012)

    Article  CAS  Google Scholar 

  37. 37.

    R.M. Modibedi, T. Masombuka, M.K. Mathe, Int. J. Hydrog. Energy 36, 4664–4672 (2011)

    Article  CAS  Google Scholar 

  38. 38.

    A.O. Neto, M.M. Tusi, N.S. De Oliveira Polanco, S.G. Da Silva, M. Coelho Dos Santos, E.V. Spinacé, Int. J. Hydrog. Energy 36, 10522–10526 (2011)

    Article  CAS  Google Scholar 

  39. 39.

    Y. Wang, T.S. Nguyen, X. Liu, X. Wang, J. Power Sources 195, 2619–2622 (2010)

    Article  CAS  Google Scholar 

  40. 40.

    P. Wu, Y. Huang, L. Zhou, Y. Wang, Y. Bu, J. Yao, Electrochim. Acta 152, 68–74 (2015)

    Article  CAS  Google Scholar 

  41. 41.

    R. Jana, U. Subbarao, S.C. Peter, J. Power Sources 301, 160–169 (2016)

    Article  CAS  Google Scholar 

  42. 42.

    B. Hammer, J.K. Nørskov, Surf. Sci. 343, 211–220 (1995)

    Article  CAS  Google Scholar 

  43. 43.

    M. Mavrikakis, B. Hammer, J.K. Norskov, Phys. Rev. Lett. 81, 2819–2822 (1998)

    Article  Google Scholar 

  44. 44.

    A. Sadiki, P. Vo, S. Hu, T.S. Copenhaver, L. Scudiero, S. Ha, J.L. Haan, Electrochim. Acta 139, 302–307 (2014)

    Article  CAS  Google Scholar 

  45. 45.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    K. Burke, M. Ernzerhof, J.P. Perdew, Chem. Phys. Lett. 265, 115–120 (1997)

    Article  CAS  Google Scholar 

  47. 47.

    P.E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  48. 48.

    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758–1775 (1999)

    Article  CAS  Google Scholar 

  49. 49.

    G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)

    Article  CAS  Google Scholar 

  50. 50.

    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)

    Article  CAS  Google Scholar 

  51. 51.

    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  52. 52.

    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)

    Article  CAS  Google Scholar 

  53. 53.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5191 (1977)

    Article  Google Scholar 

  54. 54.

    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616–3621 (1989)

    Article  CAS  Google Scholar 

  55. 55.

    W. Du, K.E. Mackenzie, D.F. Milano, N.A. Deskins, D. Su, X. Teng, S. Kapusta, N. Hackerman, Y. Chen, M.W. Kanan, B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.M. Leger, K.B. Kokoh, J. Wu, F.G. Risalvato, F.-S. Ke, P.J. Pellechia, X.-D. Zhou, A.M. Bartrom, J.L. Haan, R.L. Cook, R.C. Macduff, A.F. Sammells, J. Wu, F.G. Risalvato, P.P. Sharma, P.J. Pellechia, F.-S. Ke, X.-D. Zhou, J. Electrochem. Soc. 214, 227–232 (2012)

    Google Scholar 

  56. 56.

    E.E. Switzer, T.S. Olson, A.K. Datye, P. Atanassov, M.R. Hibbs, C.J. Cornelius, Electrochim. Acta 54, 989–995 (2009)

    Article  CAS  Google Scholar 

  57. 57.

    A. Perry, S. Babanova, I. Matanovic, A. Neumman, A. Serov, K. Artyushkova, P. Atanassov, J. Electrochem. Soc. 163, H787–H795 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.C. thanks the Institut Universitaire de France (IUF) for its support. Computational work was performed using the computational resources of EMSL (sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory), NERSC (supported by the Office of Science of the U.S. Department of Energy), and CNMS (sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tristan Asset or Plamen Atanassov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asset, T., Serov, A., Padilla, M. et al. Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium. Electrocatalysis 9, 480–485 (2018). https://doi.org/10.1007/s12678-017-0449-8

Download citation

Keywords

  • Palladium
  • Lead
  • Glycerol
  • Ethylene glycol
  • Alkaline fuel cell