Advertisement

Electrocatalysis

, Volume 9, Issue 4, pp 480–485 | Cite as

Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium

  • Tristan AssetEmail author
  • Alexey Serov
  • Monica Padilla
  • Aaron J. Roy
  • Ivana Matanovic
  • Marian Chatenet
  • Frederic Maillard
  • Plamen AtanassovEmail author
Original Research

Abstract

Unsupported PdxPb1-x electrocatalysts were synthesized by a modified sacrificial support method (SSM) and thoroughly characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Their electrochemical activity was evaluated for the electrooxidation reactions of ethylene glycol (EGOR) and glycerol (GOR) in alkaline electrolytes, reaching an onset of − 510 mV vs. the normal hydrogen electrode (NHE) for the EGOR and the GOR vs. − 430 mV vs. NHE for the EGOR and the GOR on the Pd-black. Additional mechanistic insights were provided by DFT calculations, showing that the presence of Pb resulted in a stronger binding of the OHads, therefore explaining the enhanced kinetics for the electrooxidation of C2 (ethylene glycol) and C3 (glycerol) alcohol in this environment.

Graphical Abstract

Keywords

Palladium Lead Glycerol Ethylene glycol Alkaline fuel cell 

Notes

Acknowledgments

M.C. thanks the Institut Universitaire de France (IUF) for its support. Computational work was performed using the computational resources of EMSL (sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory), NERSC (supported by the Office of Science of the U.S. Department of Energy), and CNMS (sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy).

References

  1. 1.
    A. Bach Delpeuch, T. Asset, M. Chatenet, C. Cremers, J. Electrochem. Soc. 161, F918–F924 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Bach Delpeuch, T. Asset, M. Chatenet, C. Cremers, Fuel Cells 15, 352–360 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Léger, J. Power Sources 105, 283–296 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrochim. Acta 66, 295–301 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Demarconnay, S. Brimaud, C. Coutanceau, J.-M.M. Léger, J. Electroanal. Chem. 601, 169–180 (2007)CrossRefGoogle Scholar
  6. 6.
    A.O. Neto, T.R.R. Vasconcelos, R.W.R.V. Da Silva, M. Linardi, E.V. Spinacé, J. Appl. Electrochem. 35, 193–198 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Kwon, T.J.P. Hersbach, M.T.M. Koper, Top. Catal. 57, 1272–1276 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Zhang, Y. Shao, G. Yin, Y. Lin, J. Mater. Chem. A 1, 4631–4641 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Zhou, Y. Gan, J. Du, D. Tian, R. Zhang, C. Yang, Z. Dai, J. Power Sources 232, 310–322 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Oezaslan, F. Hasché, P. Strasser, J. Phys. Chem. Lett. 4, 3273–3291 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D.R. Dekel, D. Zitoun, J. Power Sources 304, 332–339 (2016)CrossRefGoogle Scholar
  12. 12.
    H.A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di Benedetto, F. D’Acapito, Y. Paska, M. Page, D.R. Dekel, Angew. Chem. Int. Ed. 55, 6004–6007 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Baldi, T.C. Narayan, A.L. Koh, J.A. Dionne, Nat. Mater. 13, 1143–1148 (2014)CrossRefPubMedGoogle Scholar
  14. 14.
    S. Syrenova, C. Wadell, F.A.A. Nugroho, T.A. Gschneidtner, Y.A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T.J. Antosiewicz, V.P. Zhdanov, K. Moth-Poulsen, C. Langhammer, Nat. Mater. 14, 1236–1244 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Sci. Adv. 3, e1600542 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P. Atanassov, J. Am. Chem. Soc. 136, 3937–3945 (2014)CrossRefPubMedGoogle Scholar
  17. 17.
    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P. Atanassov, Electrochem. Commun. 57, 48–51 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P.B. Atanassov, Appl. Catal. B Environ. 176–177, 429–435 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Serov, U. Martinez, A. Falase, P. Atanassov, Electrochem. Commun. 22, 193–196 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Serov, U. Martinez, P. Atanassov, Electrochem. Commun. 34, 185–188 (2013)CrossRefGoogle Scholar
  21. 21.
    E. Antolini, Energy Environ. Sci. 2, 915 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, ACS Catal. 5, 4819–4824 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Zadick, L. Dubau, M. Chatenet, U. Demirci, A. Serov, P. Atanassov, ECS Trans. 69, 553–558 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Zadick, L. Dubau, U.B. Demirci, M. Chatenet, J. Electrochem. Soc. 163, F781–F787 (2016)CrossRefGoogle Scholar
  25. 25.
    P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 152, A2256–A2271 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Serov, A. Aziznia, P.H. Benhangi, K. Artyushkova, P. Atanassov, E. Gyenge, J. Mater. Chem. A 1, 14384 (2013)CrossRefGoogle Scholar
  27. 27.
    U. Martinez, A. Serov, M. Padilla, P. Atanassov, ChemSusChem 7, 2351–2357 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    N.I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B Environ. 163, 623–627 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Serov, M. Padilla, A.J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, H. Tanaka, Angew. Chem. Int. Ed. 53, 10336–10339 (2014)CrossRefGoogle Scholar
  30. 30.
    U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, J. Phys. Chem. C 118, 8999–9008 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Serov, K. Artyushkova, P. Atanassov, Adv. Energy Mater. 4, 1–7 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Brocato, A. Serov, P. Atanassov, Electrochim. Acta 87, 361–365 (2013)CrossRefGoogle Scholar
  33. 33.
    A. Serov, M.H. Robson, K. Artyushkova, P. Atanassov, Appl. Catal. B Environ. 127, 300–306 (2012)CrossRefGoogle Scholar
  34. 34.
    J. Noborikawa, J. Lau, J. Ta, S. Hu, L. Scudiero, S. Derakhshan, S. Ha, J.L. Haan, Electrochim. Acta 137, 654–660 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Serov, T. Asset, M. Padilla, I. Matanovic, U. Martinez, A. Roy, K. Artyushkova, M. Chatenet, F. Maillard, D. Bayer, C. Cremers, P. Atanassov, Appl. Catal. B Environ. 191, 76–85 (2016)CrossRefGoogle Scholar
  36. 36.
    R. Awasthi, R.N. Singh, Int. J. Hydrog. Energy 37, 2103–2110 (2012)CrossRefGoogle Scholar
  37. 37.
    R.M. Modibedi, T. Masombuka, M.K. Mathe, Int. J. Hydrog. Energy 36, 4664–4672 (2011)CrossRefGoogle Scholar
  38. 38.
    A.O. Neto, M.M. Tusi, N.S. De Oliveira Polanco, S.G. Da Silva, M. Coelho Dos Santos, E.V. Spinacé, Int. J. Hydrog. Energy 36, 10522–10526 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Wang, T.S. Nguyen, X. Liu, X. Wang, J. Power Sources 195, 2619–2622 (2010)CrossRefGoogle Scholar
  40. 40.
    P. Wu, Y. Huang, L. Zhou, Y. Wang, Y. Bu, J. Yao, Electrochim. Acta 152, 68–74 (2015)CrossRefGoogle Scholar
  41. 41.
    R. Jana, U. Subbarao, S.C. Peter, J. Power Sources 301, 160–169 (2016)CrossRefGoogle Scholar
  42. 42.
    B. Hammer, J.K. Nørskov, Surf. Sci. 343, 211–220 (1995)CrossRefGoogle Scholar
  43. 43.
    M. Mavrikakis, B. Hammer, J.K. Norskov, Phys. Rev. Lett. 81, 2819–2822 (1998)CrossRefGoogle Scholar
  44. 44.
    A. Sadiki, P. Vo, S. Hu, T.S. Copenhaver, L. Scudiero, S. Ha, J.L. Haan, Electrochim. Acta 139, 302–307 (2014)CrossRefGoogle Scholar
  45. 45.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefPubMedGoogle Scholar
  46. 46.
    K. Burke, M. Ernzerhof, J.P. Perdew, Chem. Phys. Lett. 265, 115–120 (1997)CrossRefGoogle Scholar
  47. 47.
    P.E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994)CrossRefGoogle Scholar
  48. 48.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758–1775 (1999)CrossRefGoogle Scholar
  49. 49.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)CrossRefGoogle Scholar
  50. 50.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)CrossRefGoogle Scholar
  51. 51.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)CrossRefGoogle Scholar
  52. 52.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  53. 53.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5191 (1977)CrossRefGoogle Scholar
  54. 54.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616–3621 (1989)CrossRefGoogle Scholar
  55. 55.
    W. Du, K.E. Mackenzie, D.F. Milano, N.A. Deskins, D. Su, X. Teng, S. Kapusta, N. Hackerman, Y. Chen, M.W. Kanan, B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.M. Leger, K.B. Kokoh, J. Wu, F.G. Risalvato, F.-S. Ke, P.J. Pellechia, X.-D. Zhou, A.M. Bartrom, J.L. Haan, R.L. Cook, R.C. Macduff, A.F. Sammells, J. Wu, F.G. Risalvato, P.P. Sharma, P.J. Pellechia, F.-S. Ke, X.-D. Zhou, J. Electrochem. Soc. 214, 227–232 (2012)Google Scholar
  56. 56.
    E.E. Switzer, T.S. Olson, A.K. Datye, P. Atanassov, M.R. Hibbs, C.J. Cornelius, Electrochim. Acta 54, 989–995 (2009)CrossRefGoogle Scholar
  57. 57.
    A. Perry, S. Babanova, I. Matanovic, A. Neumman, A. Serov, K. Artyushkova, P. Atanassov, J. Electrochem. Soc. 163, H787–H795 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical and Nuclear Engineering Department, UNM Center for Emerging Energy TechnologiesUniversity of New MexicoAlbuquerqueUSA
  2. 2.Univ. Grenoble Alpes, CNRS, Grenoble-INP, Institute of Engineering, Université Savoie-Mont-Blanc, LEPMIGrenobleFrance
  3. 3.Pajarito Powder, LLCAlbuquerqueUSA
  4. 4.French University InstituteParisFrance

Personalised recommendations