, Volume 9, Issue 3, pp 400–408 | Cite as

Oxygen Electroreduction in Alkaline Solution on Pd Coatings Prepared by Galvanic Exchange of Copper

  • Madis Lüsi
  • Heiki Erikson
  • Maido Merisalu
  • Aarne Kasikov
  • Leonard Matisen
  • Väino Sammelselg
  • Kaido Tammeveski
Original Research


Thin Pd coatings were obtained on glassy carbon electrodes by galvanically replacing the electron beam-deposited copper layers with palladium. The prepared electrodes were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The electrodes were electrochemically tested for oxygen reduction reaction (ORR) employing the rotating disc electrode (RDE) method in alkaline solution. The remaining copper was detected for two of the thickest (5 and 10 nm) sacrificial Cu layers using energy-dispersive X-ray spectroscopy (EDX). SEM images of thin Pd films showed some larger particle growth for all the studied film thicknesses, but spherical particles such as those achieved for example by the electron beam evaporation method were not visible. Specific activity of the electrodes for O2 reduction did not depend on the thickness of the sacrificial copper layer. The O2 reduction reaction followed a four-electron pathway with a mechanism similar to that of commercial Pd/C, where the first electron transfer to the O2 molecule is the rate-determining step.

Graphical Abstract


Oxygen reduction Electrocatalysis Palladium film Copper film Galvanic replacement 



We would like to thank Prof. Sotiris Sotiropoulos from the Aristotle University of Thessaloniki for helpful comments.

Funding Information

This work was financially supported by institutional research funding (IUT20-16 and IUT2-24) of the Estonian Ministry of Education and Research. This research was also supported by the EU through the European Regional Development Fund (TK141 ‘Advanced materials and high-technology devices for energy recuperation systems’).


  1. 1.
    E. Antolini, Energy. Environ. Sci. 2, 915 (2009)Google Scholar
  2. 2.
    M. Shao, J. Power Sources 196, 2433 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Erikson, A. Sarapuu, J. Solla-Gullon, K. Tammeveski, J. Electroanal. Chem. 780, 327 (2016)CrossRefGoogle Scholar
  4. 4.
    M.H. Shao, Q.W. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Jiang, A. Hsu, D. Chu, R. Chen, J. Electrochem. Soc. 156, B643 (2009)CrossRefGoogle Scholar
  6. 6.
    K. Huang, Z. Liu, C. Lee, Electrochim. Acta 157, 78 (2015)CrossRefGoogle Scholar
  7. 7.
    N. Arjona, M. Guerra-Balcazar, L. Ortiz-Frade, G. Osorio-Monreal, L. Alvarez-Contreras, J. Ledesma-Garcia, L.G. Arriaga, J. Mater. Chem. A 1, 15524 (2013)CrossRefGoogle Scholar
  8. 8.
    C.L. Lee, H.P. Chiou, C.R. Liu, Int. J. Hydrog. Energy 37, 3993 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Erikson, A. Sarapuu, N. Alexeyeva, K. Tammeveski, J. Solla-Gullon, J.M. Feliu, Electrochim. Acta 59, 329 (2012)CrossRefGoogle Scholar
  10. 10.
    O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, K.I. Ota, Electrochem. Commun. 6, 105 (2004)CrossRefGoogle Scholar
  11. 11.
    M.H. Seo, S.M. Choi, D.U. Lee, W.B. Kim, Z. Chen, J. Power Sources 300, 1 (2015)CrossRefGoogle Scholar
  12. 12.
    W.P. Xiao, M.A.L. Cordeiro, M.X. Gong, L.L. Han, J. Wang, C. Bian, J. Zhu, H.L. Xin, D.L. Wang, J. Mater. Chem. A 5, 9867 (2017)CrossRefGoogle Scholar
  13. 13.
    M.H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M.B. Vukmirovic, R.R. Adzic, Langmuir 22, 10409 (2006)CrossRefGoogle Scholar
  14. 14.
    M.H. Shao, K. Sasaki, R.R. Adzic, J. Am. Chem. Soc. 128, 3526 (2006)CrossRefGoogle Scholar
  15. 15.
    M.H. Shao, P. Liu, J.L. Zhang, R. Adzic, J. Phys. Chem. B 111, 6772 (2007)CrossRefGoogle Scholar
  16. 16.
    N.N. Kariuki, X.P. Wang, J.R. Mawdsley, M.S. Ferrandon, S.G. Niyogi, J.T. Vaughey, D.J. Myers, Chem. Mater. 22, 4144 (2010)CrossRefGoogle Scholar
  17. 17.
    G.M. Jiang, X.W. Li, X.S. Lv, L. Chen, Sci. Bull. 61, 1248 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Kondo, M. Nakamura, N. Maki, N. Hoshi, J. Phys. Chem. C 113, 12625 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Shao, T. Yu, J.H. Odell, M. Jin, Y. Xia, Chem. Commun. 47, 6566 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Erikson, A. Sarapuu, K. Tammeveski, J. Solla-Gullon, J.M. Feliu, Electrochem. Commun. 13, 734 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Erikson, M. Lüsi, A. Sarapuu, K. Tammeveski, J. Solla-Gullon, J.M. Feliu, Electrochim. Acta 188, 301 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Lüsi, H. Erikson, A. Sarapuu, K. Tammeveski, J. Solla-Gullon, J.M. Feliu, Electrochem. Commun. 64, 9 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Zadick, L. Dubau, A. Zalineeva, C. Coutanceau, M. Chatenet, Electrochem. Commun. 48, 1 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Bhowmik, M.K. Kundu, S. Barman, Int. J. Hydrog. Energy 41, 14768 (2016)CrossRefGoogle Scholar
  25. 25.
    J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem. Int. Ed. 44, 2132 (2005)CrossRefGoogle Scholar
  26. 26.
    V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Norskov, Angew. Chem. Int. Ed. 45, 2897 (2006)CrossRefGoogle Scholar
  27. 27.
    S.M. Alia, K. Jensen, C. Contreras, F. Garzon, B. Pivovar, Y.S. Yan, ACS Catal. 3, 358 (2013)CrossRefGoogle Scholar
  28. 28.
    N. Jung, Y. Sohn, J.H. Park, K.S. Nahm, P. Kim, S.J. Yoo, Appl. Catal. B 196, 199 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Wang, L.J. Zhang, H.Y. Gong, Y.L. Zhu, H.H. Zhao, Y. Fu, Electrochim. Acta 212, 277 (2016)CrossRefGoogle Scholar
  30. 30.
    A. Sarkar, A. Manthiram, J. Phys. Chem. C 114, 4725 (2010)CrossRefGoogle Scholar
  31. 31.
    R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Top. Catal. 46, 249 (2007)CrossRefGoogle Scholar
  32. 32.
    E.J. Coleman, A.C. Co, J. Catal. 316, 191 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Hu, K.A. Kuttiyiel, K. Sasaki, D. Su, T.H. Yang, G.G. Park, C.X. Zhang, G.Y. Chen, R.R. Adzic, Catalysts 5, 1321 (2015)CrossRefGoogle Scholar
  34. 34.
    L.A. Porter, H.C. Choi, A.E. Ribbe, J.M. Buriak, Nano Lett. 2, 1067 (2002)CrossRefGoogle Scholar
  35. 35.
    L.B. Sheridan, J. Czerwiniski, N. Jayaraju, D.K. Gebregziabiher, J.L. Stickney, D.B. Robinson, M.P. Soriaga, Electrocatalysis 3, 96 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Mohl, D. Dobo, A. Kukovecz, Z. Konya, K. Kordas, J.Q. Wei, R. Vajtai, P.M. Ajayan, J. Phys. Chem. C 115, 9403 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Baek, K.H. Kim, M.J. Kim, J.J. Kim, Appl. Catal., B 217, 313 (2017)CrossRefGoogle Scholar
  38. 38.
    L.B. Sheridan, D.K. Gebregziabiher, J.L. Stickney, D.B. Robinson, Langmuir 29, 1592 (2013)CrossRefGoogle Scholar
  39. 39.
    A. Papaderakis, I. Mintsouli, J. Georgieva, S. Sotiropoulos, Catalysts 7, 80 (2017)CrossRefGoogle Scholar
  40. 40.
    S.M. Alia, Y.S. Yan, J. Electrochem. Soc. 162, F849 (2015)CrossRefGoogle Scholar
  41. 41.
    R.Z. Yang, W.Y. Bian, P. Strasser, M.F. Toney, J. Power Sources 222, 169 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Erikson, A. Kasikov, C. Johans, K. Kontturi, K. Tammeveski, A. Sarapuu, J. Electroanal. Chem. 652, 1 (2011)CrossRefGoogle Scholar
  43. 43.
    A. Sarapuu, A. Kasikov, N. Wong, C.A. Lucas, G. Sedghi, R.J. Nichols, K. Tammeveski, Electrochim. Acta 55, 6768 (2010)CrossRefGoogle Scholar
  44. 44.
    L. Arroyo-Ramirez, D. Rodriguez, W. Otano, C.R. Cabrera, ACS Appl. Mater. Interfaces 4, 2018 (2012)CrossRefGoogle Scholar
  45. 45.
    L. Arroyo-Ramírez, Y. Figueroa, D. Rodríguez, W. Otaño, C.R. Cabrera, ECS Trans. 28, 1 (2010)Google Scholar
  46. 46.
    K. Jukk, N. Alexeyeva, A. Sarapuu, P. Ritslaid, J. Kozlova, V. Sammelselg, K. Tammeveski, Int. J. Hydrog. Energy 38, 3614 (2013)CrossRefGoogle Scholar
  47. 47.
    K. Jukk, N. Alexeyeva, P. Ritslaid, J. Kozlova, V. Sammelselg, K. Tammeveski, Electrocatalysis 4, 42 (2013)CrossRefGoogle Scholar
  48. 48.
    B.G. Pollet, Electrocatalysis 5, 330 (2014)CrossRefGoogle Scholar
  49. 49.
    H. Erikson, A. Sarapuu, J. Kozlova, L. Matisen, V. Sammelselg, K. Tammeveski, Electrocatalysis 6, 77 (2015)CrossRefGoogle Scholar
  50. 50.
    O. Ghodbane, L. Roue, D. Belanger, Chem. Mater. 20, 3495 (2008)CrossRefGoogle Scholar
  51. 51.
    M.S. Jin, H.Y. Liu, H. Zhang, Z.X. Xie, J.Y. Liu, Y.N. Xia, Nano Res. 4, 83 (2011)CrossRefGoogle Scholar
  52. 52.
    A. Sarapuu, A. Kasikov, T. Laaksonen, K. Kontturi, K. Tammeveski, Electrochim. Acta 53, 5873 (2008)CrossRefGoogle Scholar
  53. 53.
    M. Grden, M. Lukaszewski, G. Jerkiewicz, A. Czerwinski, Electrochim. Acta 53, 7583 (2008)CrossRefGoogle Scholar
  54. 54.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)Google Scholar
  55. 55.
    D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2001)Google Scholar
  56. 56.
    R.E. Davis, G.L. Horvath, C.W. Tobias, Electrochim. Acta 12, 287 (1967)CrossRefGoogle Scholar
  57. 57.
    J.S. Spendelow, A. Wieckowski, Phys. Chem. Chem. Phys. 9, 2654 (2007)CrossRefGoogle Scholar
  58. 58.
    H. Erikson, M. Liik, A. Sarapuu, J. Kozlova, V. Sammelselg, K. Tammeveski, Electrochim. Acta 88, 513 (2013)CrossRefGoogle Scholar
  59. 59.
    G.F. Alvarez, M. Mamlouk, S.M.S. Kumar, K. Scott, J. Appl. Electrochem. 41, 925 (2011)CrossRefGoogle Scholar
  60. 60.
    L.M. Vracar, D.B. Sepa, A. Damjanovic, J. Electrochem. Soc. 136, 1973 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Madis Lüsi
    • 1
  • Heiki Erikson
    • 1
  • Maido Merisalu
    • 1
    • 2
  • Aarne Kasikov
    • 2
  • Leonard Matisen
    • 2
  • Väino Sammelselg
    • 1
    • 2
  • Kaido Tammeveski
    • 1
  1. 1.Institute of ChemistryUniversity of TartuTartuEstonia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations