Advertisement

Electrocatalysis

, Volume 9, Issue 3, pp 409–415 | Cite as

A Simple Method to Establish the Relationship Between the Equilibrium Polarization Resistance and the Elementary Kinetic Parameters of an Electrocatalysed Reaction

  • María A. Montero
  • Carlos A. Marozzi
  • María R. Gennero de Chialvo
  • Abel C. Chialvo
Original Research
  • 71 Downloads

Abstract

A simple and rigorous methodology to establish the relationship between the faradaic equilibrium polarization resistance of an electrocatalytic reaction with the elementary kinetic parameters involved in the reaction mechanism is proposed. It was derived through an alternative method, which avoided the differentiation of the corresponding current-overpotential dependence. This formalism includes the cases where both, reactants and products, exhibit diffusion contributions. It is demonstrated that the equilibrium polarization resistance is the sum of both, faradaic and diffusion, contributions. Each diffusion term has a linear variation with the inverse of the limiting diffusion current density of the species involved. This behavior was exemplified with two different experimental data sets for the hydrogen electrode reaction, obtained on a rotating disc and microelectrodes, respectively.

Graphical Abstract

Experimental equilibrium polarization resistance is the sum of faradaic (\( {R}_p^o \)) and diffusion (\( {R}_p^d \)) contributions. A simple and novel methodology is presented for the derivation of the relationship between \( {R}_p^o \) and the equilibrium reaction rates of the elementary steps (\( {v}_i^e \)). It is also demonstrated the linear variation of \( {R}_p^d \) with the inverse of the limiting diffusion current density.

Keywords

Equilibrium polarization resistance Faradaic and diffusion contributions Equilibrium reaction rate of elementary steps Exchange current density 

Notes

Acknowledgements

The authors wish to acknowledge the financial support received from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2014-2001); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0311); and Universidad Nacional del Litoral (UNL, CAI+D 2016 PIC 018LI).

References

  1. 1.
    E. Gileadi, Electrode kinetics for chemists, chemical engineers and materials scientists (VCH Publishers, New York, 1993), p. 261Google Scholar
  2. 2.
    J.O.’.M. Bockris, S.U.M. Khan, Surface electrochemistry: a molecular level approach (Plenum Press, New York, 1993), p. 313CrossRefGoogle Scholar
  3. 3.
    P.A. Christensen, A. Hamnett, Techniques and mechanisms in electrochemistry (Chapman & Hill, Oxford, 1994), p. 29Google Scholar
  4. 4.
    M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part I. Theoretical aspects. Phys. Chem. Chem. Phys. 6, 4009 (2004)CrossRefGoogle Scholar
  5. 5.
    P.M. Quaino, M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen electrode reaction: a complete kinetic description. Electrochim. Acta 52, 7396 (2007)CrossRefGoogle Scholar
  6. 6.
    R.G. Ehrenburg, Application of the stoichiometric number method to investigation of multistep reactions. J. Res. Inst. Catal. Hokkaido Univ. 28, 137 (1980)Google Scholar
  7. 7.
    M.R. Gennero de Chialvo, A.C. Chialvo, Exchange current density, electrocatalytic activity and volcano curve for the hydrogen electrode reaction: theoretical analysis. Curr. Topics Electrochem. 17, 41 (2012)Google Scholar
  8. 8.
    J. Horiuti, T. Nakamura, On the theory of heterogeneous catalysis. Adv. Catal. 17, 1 (1967)Google Scholar
  9. 9.
    R. Haase, Thermodynamics of irreversible processes (Dover, New York, 1990)Google Scholar
  10. 10.
    V.G. Levich, Physicochemical hydrodynamics (Prentice Hall, Englewood Cliffs, 1962), p. 102Google Scholar
  11. 11.
    R. Alkire, A.A. Mirarefi, The current distribution within tubular electrodes under laminar flow. J. Electrochem. Soc. 120, 1507 (1973)CrossRefGoogle Scholar
  12. 12.
    S. Chen, A. Kucernak, Electrocatalysis under conditions of high mass transport: Investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J. Phys. Chem. B 108, 13984 (2004)CrossRefGoogle Scholar
  13. 13.
    M.D. Arce, J.L. Fernandez, M.R. Gennero de Chialvo, A.C. Chialvo, Fabrication, characterization and application of graphite ring ultramicroelectrodes for kinetic studies of fuel cell reactions under high mass-transport rates. J. Electroanal. Chem. 642, 41 (2010)CrossRefGoogle Scholar
  14. 14.
    M.R. Gennero de Chialvo, A.C. Chialvo, The polarization resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects. J. Electroanal. Chem. 415, 97 (1996)CrossRefGoogle Scholar
  15. 15.
    M.A. Montero, C.A. Marozzi, M.R. Gennero de Chialvo, A.C. Chialvo, Hydrogen electrode reaction: a general description of the equilibrium polarization resistance, 20th topical meeting of the International Society of Electrochemistry (ISE): advances in lithium and hydrogen electrochemical systems for energy conversion and storage. S2-025, Buenos Aires, (2017)Google Scholar
  16. 16.
    C.A. Marozzi, M.R. Gennero de Chialvo, A.C. Chialvo, Criteria for the selection of the scan rate in the evaluation of the kinetic parameters of the hydrogen oxidation reaction by a potentiodynamic sweep. J. Electroanal. Chem. 748, 61 (2015)CrossRefGoogle Scholar
  17. 17.
    C.A. Marozzi, M.R. Canto, V. Costanza, A.C. Chialvo, Analysis of the use of voltammetric results as a steady state approximation to evaluate kinetic parameters of the hydrogen evolution reaction. Electrochim. Acta 51, 731 (2005)CrossRefGoogle Scholar
  18. 18.
    O. Seri, Y. Itoh, Differentiating polarization curve technique for determining the exchange current density of hydrogen electrode reaction. Electrochim. Acta 218, 345 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • María A. Montero
    • 1
  • Carlos A. Marozzi
    • 1
  • María R. Gennero de Chialvo
    • 1
  • Abel C. Chialvo
    • 1
  1. 1.Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), Programa de Electroquímica Aplicada e Ingeniería Electroquímica, PRELINE (FIQ-UNL)Santa FeArgentina

Personalised recommendations