, Volume 9, Issue 3, pp 314–322 | Cite as

The Contribution of Carbon Supports on the Activity of Pt for Glycerol Electrooxidation: the Importance of Investigating the Derivative Voltammogram and Arrhenius Plots

  • Brenda D. Ferreira
  • Leticia M. Alencar
  • Gabriel C. da Silva
  • Gilberto Maia
  • Cauê A. Martins
Original Research


Glycerol electrooxidation was evaluated on Pt electrodeposited over carbon Vulcan (CV), multi-walled carbon nanotubes (MWCNTs), graphene oxide nanoribbons (GONRs), and graphene nanoribbons (GNRs). Different masses of Pt were deposited under the same conditions, producing different surface areas of Pt. The presence of GNRs slightly enhanced the specific activity of the catalyst. By investigating the derivative voltammetry of glycerol, we found that the supports did not shift the onset potential towards lower values. Moreover, we found that the apparent activation energy did not vary by changing the carbon support. In this sense, we rationalized the slight improvement in specific activity of Pt deposited on GNRs as a consequence of the frequency of collision factor due to the availability of Pt over the longitudinal flat surface of nanoribbons, as shown by the high active surface area/mass of electrodeposited Pt ratio.


Anodes Carbon supports Graphene nanoribbons Onset potential Activation energy 



The authors acknowledge financial assistance from CNPq (Grant # 454516/2014-2), FUNDECT (Grants # 026/2015 and #099/2016), CAPES, and FINEP.


  1. 1.
    J. Maya-Cornejo, M. Guerra-Balcázar, N. Arjona, L. Álvarez-Contreras, F.J. Rodríguez Valadez, M.P. Gurrola, J. Ledesma-García, L.G. Arriaga, Fuel 183, 195 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Dector, F.M. Cuevas-Muñiz, M. Guerra-Balcázar, L.A. Godínez, J. Ledesma-García, L.G. Arriaga, Int. J. Hydrog. Energy 38, 12617 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Thia, M. Xie, Z. Liu, X. Ge, Y. Lu, W. E. Fong, and X. Wang. ChemCatChem 8, ​3272 (2016)Google Scholar
  4. 4.
    Y. Kwon, T.J.P. Hersbach, M.T.M. Koper, Top. Catal. 57, 1272 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T.M. Koper, ACS Catal. 2, 759 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Lee, H. J. Kim, E. J. Lim, Y. Kim, Y. Noh, G. W. Huber, and W. B. Kim, Green Chem (2016)Google Scholar
  7. 7.
    H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, and X. Wang, ACS Catal. 5, 3174 (2015)CrossRefGoogle Scholar
  8. 8.
    A.C. Garcia, M.J. Kolb, C. van Nierop y Sanchez, J. Vos, Y.Y. Birdja, Y. Kwon, G. Tremiliosi-Filho, M.T.M. Koper, ACS Catal. 6, 4491 (2016)CrossRefGoogle Scholar
  9. 9.
    J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K.J.J. Mayrhofer, Beilstein J. Nanotechnol. 5, 44 (2014)CrossRefGoogle Scholar
  10. 10.
    C.A. Martins, P.S. Fernández, H.E. Troiani, M.E. Martins, A. Arenillas, G.A. Camara, Electrocatalysis 5, 204 (2014)CrossRefGoogle Scholar
  11. 11.
    C.A. Martins, P.S. Fernández, F. de Lima, H.E. Troiani, M.E. Martins, A. Arenillas, G. Maia, G.A. Camara, Nano Energy 9, 142 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.-J. Wang, D.P. Wilkinson, J. Zhang, Chem. Rev. 111, 7625 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Trogadas, T.F. Fuller, P. Strasser, Carbon 75, 5 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Zhang, M. Terrones, C.R. Park, R. Mukherjee, M. Monthioux, N. Koratkar, Y.S. Kim, R. Hurt, E. Frackowiak, T. Enoki, Y. Chen, Y. Chen, A. Bianco, Carbon 98, 708 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Yeong Cheon, C. Ahn, D. Jong You, C. Pak, S. Hyun Hur, J. Kim, S. Hoon Joo, J. Mater. Chem. A 1, 1270 (2013)CrossRefGoogle Scholar
  16. 16.
    P.S. Fernández, M.E. Martins, G.A. Camara, Electrochim. Acta 66, 180 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Liu, R. Zhang, W. Chen, Chem. Rev. 114, 5117 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, J. Power Sources 184, 104 (2008)CrossRefGoogle Scholar
  19. 19.
    D.S. Su, S. Perathoner, G. Centi, Chem. Rev. 113, 5782 (2013)CrossRefGoogle Scholar
  20. 20.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, Z. Sun, J. Yao, D.V. Kosynkin, J.M. Tour, J. Am. Chem. Soc. 131, 13460 (2009)CrossRefGoogle Scholar
  22. 22.
    D.K. James, J.M. Tour, Acc. Chem. Res. 46, 2307 (2013)CrossRefGoogle Scholar
  23. 23.
    A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, ACS Nano 4, 2059 (2010)CrossRefGoogle Scholar
  24. 24.
    C. Wang, H. Li, J. Zhao, Y. Zhu, W.Z. Yuan, Y. Zhang, Int. J. Hydrog. Energy 38, 13230 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Teles, A. Arenillas, G.C.d. Silva, P.S. Fernández, E.S.F. Cardoso, G. Maia, C.A. Martins, Electrocatalysis 1 (2017)Google Scholar
  26. 26.
    F. de Lima, G. Maia, Nanoscale 7, 6193 (2015)CrossRefGoogle Scholar
  27. 27.
    P.S. Fernández, C.A. Martins, M.E. Martins, G.A. Camara, Electrochim. Acta 112, 686 (2013)CrossRefGoogle Scholar
  28. 28.
    P.S. Fernández, J. Fernandes Gomes, C.A. Angelucci, P. Tereshchuk, C.A. Martins, G.A. Camara, M.E. Martins, J.L.F. Da Silva, G. Tremiliosi-Filho, ACS Catal. 5, 4227 (2015)CrossRefGoogle Scholar
  29. 29.
    C.A. Martins, P.S. Fernández, H.E. Troiani, M.E. Martins, G.A. Camara, J. Electroanal. Chem. 717–718, 231 (2014)CrossRefGoogle Scholar
  30. 30.
    P.S. Fernández, C.A. Martins, C.A. Angelucci, J.F. Gomes, G.A. Camara, M.E. Martins, G. Tremiliosi-Filho, ChemElectroChem 2, 263 (2015)CrossRefGoogle Scholar
  31. 31.
    P.S. Fernández, M.E. Martins, C.A. Martins, G.A. Camara, Electrochem. Commun. 15, 14 (2012)CrossRefGoogle Scholar
  32. 32.
    C.R. Zanata, P.S. Fernández, A.B. Santos, G.C. da Silva, G.A. Camara, C.A. Martins, J. Braz. Chem. Soc. 27, 1980 (2016)Google Scholar
  33. 33.
    A. Murthy, A. Manthiram, J. Phys. Chem. C 116, 3827 (2012)CrossRefGoogle Scholar
  34. 34.
    J.F. Gomes, C.A. Martins, M.J. Giz, G. Tremiliosi-Filho, G.A. Camara, J. Catal. 301, 154 (2013)CrossRefGoogle Scholar
  35. 35.
    G.L. Caneppele, T.S. Almeida, C.R. Zanata, É. Teixeira-Neto, P.S. Fernández, G.A. Camara, C.A. Martins, Appl. Catal. B Environ. 200, 114 (2017)CrossRefGoogle Scholar
  36. 36.
    E. Habibi, H. Razmi, Int. J. Hydrog. Energy 37, 16800 (2012)CrossRefGoogle Scholar
  37. 37.
    K. Ishiyama, F. Kosaka, I. Shimada, Y. Oshima, J. Otomo, J. Power Sources 225, 141 (2013)CrossRefGoogle Scholar
  38. 38.
    L.V. Kumar, S. Addo Ntim, O. Sae-Khow, C. Janardhana, V. Lakshminarayanan, S. Mitra, Electrochim. Acta 83, 40 (2012)CrossRefGoogle Scholar
  39. 39.
    A.F.B. Barbosa, V.L. Oliveira, J. van Drunen, G. Tremiliosi-Filho, J. Electroanal. Chem. 746, 31 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Holm, P.K. Dahlstrøm, O.S. Burheim, S. Sunde, D.A. Harrington, F. Seland, Electrochim. Acta (n.d.)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Brenda D. Ferreira
    • 1
  • Leticia M. Alencar
    • 1
  • Gabriel C. da Silva
    • 2
  • Gilberto Maia
    • 3
  • Cauê A. Martins
    • 1
  1. 1.Faculty of Exact Science and TechnologyFederal University of Grande DouradosDouradosBrazil
  2. 2.Instituto de Química de São CarlosUniversidade de São Paulo, IQSC-USP, C.P. 780São CarlosBrazil
  3. 3.Institute of ChemistryFederal University of Mato Grosso do Sul, C.P. 549Campo GrandeBrazil

Personalised recommendations