Advertisement

Electrocatalysis

, Volume 9, Issue 3, pp 293–301 | Cite as

Stability Testing of Pt x Sn1 − x /C Anodic Catalyst for Renewable Hydrogen Production Via Electrochemical Reforming of Ethanol

  • Ana B. Calcerrada
  • Ana R. de la Osa
  • Holly A. E. Dole
  • Fernando Dorado
  • Elena A. Baranova
  • Antonio de Lucas-Consuegra
Original Research
  • 194 Downloads

Abstract

The stability testing of three different synthesized Pt x Sn1 − x /C anodic catalysts has been demonstrated for the renewable generation of hydrogen via the electrochemical reforming of ethanol in a proton exchange membrane (PEM) electrolysis cell. Three Pt-Sn anodic catalysts with different nominal Pt:Sn ratios of 60:40, 70:30, and 80:20 atomic (at.) % were synthetized and characterized by the means of electrochemical tests and XRD. Among them, the Pt-Sn anodic catalyst with 70:30 at. ratio showed the highest electrochemical active surface area (ECSA) and highest electrochemical reforming activity, which allowed the production of pure H2 with the lowest electrical energy requirement (below 23 kWh·kgH2 −1). The stability of the system was also demonstrated through a long-term chronopotentiometry experiment of 48 h in duration. The potential for practical use and coupling this technology with renewable solar energy, a number of cyclic voltammetry tests (with a low scan rate of 0.19 mV·s−1) were also carried out. These experiments were performed by simulating the electrical power produced by a photovoltaic cell. This test showed good stability/reproducibility of the MEA and, hence, a suitable integration between the two technologies for the sustainable energy storage in the form of hydrogen.

Graphical Abstract

Keywords

Pt-Sn catalyst Ethanol electro-oxidation Hydrogen production Electrochemical reforming Energy storage Electrolysis 

Notes

Funding Information

We acknowledge the Spanish Ministry of Economy and Competiveness (project CTQ2016-75491-R) for the financial support. A. B. Calcerrada would like also to thank the Junta de Comunidades de Castilla-La Mancha (JCCM) and the European Social Fund for the financial support.

Supplementary material

12678_2017_428_MOESM1_ESM.docx (322 kb)
ESM 1 (DOCX 322 kb)

References

  1. 1.
    A.R. de la Osa, A.B. Calcerrada, J.L. Valverde, E.A. Baranova, A. de Lucas-Consuegra, Electrochemical reforming of alcohols on nanostructured platinum-tin catalyst-electrodes. Appl. Catal. B Environ. 179, 276–284 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Lamy, B. Guenot, M. Cretin, and G. Pourcelly. A kinetics analysis of methanol oxidation under electrolysis/fuel cell working conditions. In Symposium on Electrocatalysis 7 - 227th ECS Meeting. 2015. Electrochem. Soc. Inc.Google Scholar
  3. 3.
    C.R. Cloutier, D.P. Wilkinson, Electrolytic production of hydrogen from aqueous acidic methanol solutions. Int. J. Hydrog. Energy 35(9), 3967–3984 (2010)CrossRefGoogle Scholar
  4. 4.
    A.T. Pham, T. Baba, T. Shudo, Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: influence of change in grain diameter and material of porous metal flow field. I Int. J. Hydrogen Energy 38(24), 9945–9953 (2013)CrossRefGoogle Scholar
  5. 5.
    A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int. J. Hydrog. Energy 33(17), 4649–4654 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Kongjao, S. Damronglerd, M. Hunsom, Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J. Appl. Electrochem. 41(2), 215–222 (2011)CrossRefGoogle Scholar
  7. 7.
    J. de Paula, D. Nascimento, J.J. Linares, Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor. J. Appl. Electrochem. 45(7), 689–700 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Caravaca, F.M. Sapountzi, A. De Lucas-Consuegra, C. Molina-Mora, F. Dorado, J.L. Valverde, Electrochemical reforming of ethanol-water solutions for pure H 2 production in a PEM electrolysis cell. Int. J. Hydrog. Energy 37(12), 9504–9513 (2012)CrossRefGoogle Scholar
  9. 9.
    C. Lamy, T. Jaubert, S. Baranton, and C. Coutanceau, Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode. J. Power Sources, 2014. 245(0): p. 927–936Google Scholar
  10. 10.
    A. De Lucas-Consuegra, A.R. De La Osa, A.B. Calcerrada, J.J. Linares, D. Horwat, A novel sputtered Pd mesh architecture as an advanced electrocatalyst for highly efficient hydrogen production. J. Power Sources 321, 248–256 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Jablonski, A. Lewera, Electrocatalytic oxidation of ethanol on Pt, Pt-Ru and Pt-Sn nanoparticles in polymer electrolyte membrane fuel cell-role of oxygen permeation. Appl. Catal. B Environ. 115-116, 25–30 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Caravaca, A. De Lucas-Consuegra, A.B. Calcerrada, J. Lobato, J.L. Valverde, F. Dorado, From biomass to pure hydrogen: electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl. Catal. B Environ. 134-135, 302–309 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.X. Chen, A. Lavacchi, H.A. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza, Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat. Commun. 5 (2014)Google Scholar
  14. 14.
    A. De Lucas-Consuegra, A.B. Calcerrada, A.R. De La Osa, J.L. Valverde, Electrochemical reforming of ethylene glycol. Influence of the operation parameters, simulation and its optimization. Fuel Process. Technol. 127, 13–19 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Jiang, A. Hsu, D. Chu, R. Chen, Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. I Int. J. Hydrogen Energy 35(1), 365–372 (2010)CrossRefGoogle Scholar
  16. 16.
    A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinacé, Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J. Power Sources 166(1), 87–91 (2007)CrossRefGoogle Scholar
  17. 17.
    F. Vigier, C. Coutanceau, F. Hahn, E.M. Belgsir, C. Lamy, On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 563(1), 81–89 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Lamy, S. Rousseau, E.M. Belgsir, C. Coutanceau, J.M. Léger, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim. Acta 49(22-23 SPEC. ISS.), 3901–3908 (2004)CrossRefGoogle Scholar
  19. 19.
    E.A. Baranova, T. Amir, P.H.J. Mercier, B. Patarachao, D. Wang, Y. Le Page, Single-step polyol synthesis of alloy Pt7Sn3 versus bi-phase Pt/SnOx nano-catalysts of controlled size for ethanol electro-oxidation. J. Appl. Electrochem. 40(10), 1767–1777 (2010)CrossRefGoogle Scholar
  20. 20.
    E. Antolini, E.R. Gonzalez, The electro-oxidation of carbon monoxide, hydrogen/carbon monoxide and methanol in acid medium on Pt-Sn catalysts for low-temperature fuel cells: a comparative review of the effect of Pt-Sn structural characteristics. Electrochim. Acta 56(1), 1–14 (2010)CrossRefGoogle Scholar
  21. 21.
    E.A. Baranova, C. Bock, D. Ilin, D. Wang, B. MacDougall, Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts. Surf. Sci. 600(17), 3502–3511 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J. Am. Chem. Soc. 126(25), 8028–8037 (2004)CrossRefGoogle Scholar
  23. 23.
    P. Rupa Kasturi, R. Kalai Selvan, Y.S. Lee, Pt decorated: Artocarpus heterophyllus seed derived carbon as an anode catalyst for DMFC application. RSC Adv. 6(67), 62680–62694 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Lobato, H. Zamora, J. Plaza, P. Cañizares, M.A. Rodrigo, Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Appl. Catal. B Environ. 198, 516–524 (2016)CrossRefGoogle Scholar
  25. 25.
    R.M. Abdel Hameed, A.E. Fetohi, R.S. Amin, K.M. El-Khatib, Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium. Appl. Surf. Sci. 359, 651–663 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Jiang, A. Hsu, D. Chu, R. Chen, Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions. J. Electrochem. Soc. 156(3), B370–B376 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Carmo, A.R. dos Santos, J.G.R. Poco, M. Linardi, Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications. J. Power Sources 173(2), 860–866 (2007)CrossRefGoogle Scholar
  28. 28.
    W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, Pt based anode catalysts for direct ethanol fuel cells. Appl. Catal. B Environ. 46(2), 273–285 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Chatterjee, A. Chatterjee, S. Ghosh, I. Basumallick, Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochim. Acta 54(28), 7299–7304 (2009)CrossRefGoogle Scholar
  30. 30.
    E.A. Baranova, Y. Le Page, D. Ilin, C. Bock, B. MacDougall, P.H.J. Mercier, Size and composition for 1-5 nm Ø PtRu alloy nano-particles from Cu Kα X-ray patterns. J. Alloys Compd. 471(1–2), 387–394 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim. Acta 52(24), 6622–6629 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Appl. Catal. B Environ. 91(1–2), 269–274 (2009)CrossRefGoogle Scholar
  33. 33.
    F.M. Sapountzi, M.N. Tsampas, H.O.A. Fredriksson, J.M. Gracia, J.W. Niemantsverdriet, Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes. Int. J. Hydrog. Energy 42(16), 10762–10774 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Song, W. Zhou, J. Tian, R. Cai, G. Sun, Q. Xin, S. Kontou, P. Tsiakaras, Ethanol crossover phenomena and its influence on the performance of DEFC. J. Power Sources 145(2), 266–271 (2005)CrossRefGoogle Scholar
  35. 35.
    G. Sasikumar, A. Muthumeenal, S.S. Pethaiah, N. Nachiappan, R. Balaji, Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. Int. J. Hydrog. Energy 33(21), 5905–5910 (2008)CrossRefGoogle Scholar
  36. 36.
    J. Datta, A. Dutta, S. Mukherjee, The beneficial role of the cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: Temperature effect and reaction mechanism. J. Phys. Chem. C 115(31), 15324–15334 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Dutta, S.S. Mahapatra, J. Datta, High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrog. Energy 36(22), 14898–14906 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Song, G. Wang, W. Zhou, X. Zhao, G. Sun, Q. Xin, S. Kontou, P. Tsiakaras, The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance. J. Power Sources 140(1), 103–110 (2005)CrossRefGoogle Scholar
  39. 39.
    J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, Testing a vapour-fed PBI-based direct ethanol fuel cell. Fuel Cells 9(5), 597–604 (2009)CrossRefGoogle Scholar
  40. 40.
    M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38(12), 4901–4934 (2013)CrossRefGoogle Scholar
  41. 41.
    S. Zhang, X.Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sources 194(2), 588–600 (2009)CrossRefGoogle Scholar
  42. 42.
    L. Zhang, D. Xia, Electrocatalytic activity of ordered intermetallic PtSb for methanol electro-oxidation. Appl. Surf. Sci. 252(6), 2191–2195 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Chemical Engineering Department, Faculty of Chemical Sciences and TechnologyUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Department of Chemical and Biological Engineering, Center for Catalysis Research and Innovation (CCRI)University of OttawaOttawaCanada

Personalised recommendations