Influence of Carbon Support on Catalytic Layer Performance of Proton Exchange Membrane Fuel Cells

Abstract

Pt-based catalysts supported onto various carbon nanotubes (CNTs) and carbon black Vulcan XC-72 have been studied in this work. The samples have been prepared via electrochemical dispersion technique. The carbon nanotubes exhibit the mesoporous morphology with the pore size of 5—30 nm, while Vulcan XC-72 support exhibits a microporous structure. The agglomeration of Pt particles (5—7 nm) is found to be more extended at the carbon nanotubes compared to the carbon black. The examination of the synthesized catalysts in a catalytic membrane electrode assembly layer reveals that CNTs favor a power density higher than in the carbon black support owing to a more suitable porous structure of the catalyst layer. Moreover, the maximum characteristics of membrane electrode assembly are obtained for few-walled carbon nanotubes with a broad carbon having size distribution.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J. Zhang, in Fundamentals and applications. PEM fuel cell electrocatalysts and catalyst layers (Springer Publisher, New York, 2008)

    Google Scholar 

  2. 2.

    K. Zhou, Y. Li, Angew. Chem. Int. Ed. 51, 602 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    J. Li, X. Fu, Z. Mao, Y. Yang, T. Qiu, Q. Wu, Nanoscale Res. Lett. 11, 3 (2016)

    Article  Google Scholar 

  4. 4.

    W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, J. Chem. Phys. B 110, 15353 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    T. Yu, J. Zeng, B. Lim, Y. Xia, Adv. Mater. 22, 5188 (2010)

    CAS  Article  Google Scholar 

  6. 6.

    P. Dhanasekaran, S.V. Selvaganesh, L. Sarathi, S.D. Bhat, Electrocatalysis 7, 495 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    K.G. Nishanth, P. Sridhar, S. Pitchumani, A.K. Shukla, Fuel Cells 12, 146 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    Z. Qiu, H. Huang, J. Du, T. Feng, W. Zhang, Y. Gan, X. Tao, J. Chem. Phys. C 117, 13770 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    M.D. Obradović, B.M. Babić, V.R. Radmilović, N.V. Krstajić, S.L. Gojković, Int. J. Hydrog. Energy 37, 10671 (2012)

    Article  Google Scholar 

  10. 10.

    J. Zeng, C. Francia, C. Gerbaldi, V. Baglio, S. Specchia, A.S. Aricò, P. Spinelli, Electrochim. Acta 94, 80 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J. Chem. Phys. B 106, 4181 (2002)

    CAS  Article  Google Scholar 

  12. 12.

    E. Antolini, Appl. Catal, B 88, 1 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    M. Liu, R. Zhang, W. Chen, Chem. Rev. 114, 5117 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Chem. Phys. B 108, 19960 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Langmuir 22, 2392 (2006)

    CAS  Article  Google Scholar 

  16. 16.

    J. Zhang, L. Gao, J. Alloys Compd. 505, 604 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    J. Jung, B. Park, J. Kim, Nanoscale Res. Lett. 7, 34 (2012)

    Article  Google Scholar 

  18. 18.

    C. Tan, X. Huang, H. Zhang, Mater. Today 16, 29 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    K.G. Sun, J.S. Chung, S.H. Hur, Nanoscale Res. Lett. 10, 257 (2015)

    Article  Google Scholar 

  20. 20.

    I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, S. Anshin, I. Mazov, J.P. Issi, D. Kusnezov, Compos. Sci. Technol. 129, 79 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013)

    Article  Google Scholar 

  22. 22.

    C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, N. Yan, Lett 4, 345 (2004)

    CAS  Google Scholar 

  23. 23.

    C. Gupta, P.H. Maheshwari, S.R. Dhakate, Mater. Renew. Sustain. Energy 5, 2 (2016)

    Article  Google Scholar 

  24. 24.

    Z.A. Xiong, S. Liao, S. Hou, H. Zou, D. Dang, X. Tian, H. Nan, T. Shu, L. Du, Int. J. Hydrog. Energy 41, 9191 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Zheng, Z. Dou, Y. Fang, M. Li, X. Wu, J. Zeng, Z. Hou, S. Liao, J. Power Sources 306, 448 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    L.-M. Zhang, X.-L. Sui, L. Zhao, J.-J. Zhang, D.-M. Gu, Z.-B. Wang, Carbon 108, 561 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Langmuir 18, 4054 (2002)

    CAS  Article  Google Scholar 

  28. 28.

    S. Kim, S.-J. Park, J. Power Sources 159, 42 (2006)

    CAS  Article  Google Scholar 

  29. 29.

    E.N. Gribov, A.N. Kuznetsov, I.N. Voropaev, V.A. Golovin, P.A. Simonov, A.V. Romanenko, A.G. Okunev, Electrocatalysis 7, 159 (2016)

    CAS  Article  Google Scholar 

  30. 30.

    S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, J. Power Sources 194, 588 (2009)

    CAS  Article  Google Scholar 

  31. 31.

    I. Leontyev, A. Kuriganova, Y. Kudryavtsev, B. Dkhil, N. Smirnova, Appl. Catal, A 431–432, 120 (2012)

    Article  Google Scholar 

  32. 32.

    N.V. Smirnova, A.B. Kuriganova, K.S. Novikova, E.V. Gerasimova, Russ. J. Electrochem. 50, 899 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Pressure Res. 14, 235 (1996)

    Article  Google Scholar 

  34. 34.

    V. Dyadkin, P. Pattison, V. Dmitriev, D. Chernyshov, J. Synchrotron Radiat. 23, 825 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66 (1994). https://doi.org/10.1351/pac199466081739

  36. 36.

    M.R. Ammar, E. Charon, J.N. Rouzaud, J. Aleon, G. Guimbretière, P. Simon, Spectrosc. Lett. 44, 535 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    A.C. Ferrari, Solid State Commun. 143, 47 (2007)

    CAS  Article  Google Scholar 

  38. 38.

    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    CAS  Article  Google Scholar 

  39. 39.

    O.A. Maslova, M.R. Ammar, G. Guimbretière, J.N. Rouzaud, P. Simon, Phys. Rev. B 86, 134205 (2012)

    Article  Google Scholar 

  40. 40.

    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    CAS  Article  Google Scholar 

  41. 41.

    O. Beyssac, B. Goffé, J.-P. Petitet, E. Froigneux, M. Moreau, J.-N. Rouzaud, Spectrochim. Acta A Mol. Biomol. Spectrosc. 59, 2267 (2003)

    Article  Google Scholar 

  42. 42.

    A. Hirsch, Angew. Chem. Int. Ed. 41, 1853 (2002)

    CAS  Article  Google Scholar 

  43. 43.

    J. Rodríguez-Carvajal, Commission on powder diffraction (IUCr). Newsletter 26, 12 (2001)

    Google Scholar 

  44. 44.

    P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20, 79 (1987)

    CAS  Article  Google Scholar 

  45. 45.

    I.N. Leontyev, S.V. Belenov, V.E. Guterman, P. Haghi-Ashtiani, A.P. Shaganov, B. Dkhil, J. Chem. Phys. C 115, 5429 (2011)

    CAS  Article  Google Scholar 

  46. 46.

    I.N. Leontyev, A.B. Kuriganova, N.G. Leontyev, L. Hennet, A. Rakhmatullin, N.V. Smirnova, V. Dmitriev, RSC Adv. 4, 35959 (2014)

    CAS  Article  Google Scholar 

  47. 47.

    A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, J.M. Feliu, J. Electroanal. Chem. 644, 117 (2010)

    Article  Google Scholar 

  48. 48.

    A. López-Cudero, A. Cuesta, C. Gutiérrez, J. Electroanal. Chem. 579, 1 (2005)

    Article  Google Scholar 

  49. 49.

    A. López-Cudero, Á. Cuesta, C. Gutiérrez, J. Electroanal. Chem. 586, 204 (2006)

    Article  Google Scholar 

  50. 50.

    A. Wieckowski, E. Savinova, C. Vayenas, Catalysis and electrocatalysis at nanoparticle surfaces (CRC Press, Boca Raton, 2003)

    Google Scholar 

  51. 51.

    F. Maillard, E.R. Savinova, U. Stimming, J. Electroanal. Chem. 599, 221 (2007)

    CAS  Article  Google Scholar 

  52. 52.

    M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 127, 6819 (2005)

    CAS  Article  Google Scholar 

  53. 53.

    J. Li, Y. Liang, Q. Liao, X. Zhu, X. Tian, Electrochim. Acta 54, 1277 (2009)

    CAS  Article  Google Scholar 

  54. 54.

    F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Phys. Chem. Chem. Phys. 7, 385 (2005)

    CAS  Article  Google Scholar 

  55. 55.

    R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163, 76 (2006)

    CAS  Article  Google Scholar 

  56. 56.

    J.C. Meier, C. Galeano, I. Katsounaros, J. Witte, H.J. Bongard, A.A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schüth, K.J.J. Mayrhofer, Beilstein J. Nanotechnol. 5, 44 (2014)

    Article  Google Scholar 

  57. 57.

    L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, G. Ceder, J. Am. Chem. Soc. 132, 596 (2010)

    CAS  Article  Google Scholar 

  58. 58.

    L. Dubau, L. Castanheira, G. Berthomé, F. Maillard, Electrochim. Acta 110, 273 (2013)

    CAS  Article  Google Scholar 

  59. 59.

    P. Jovanovič, U. Petek, N. Hodnik, F. Ruiz-Zepeda, M. Gatalo, M. Šala, V. Šelih, T. Patrick Fellinger, M. Gaberšček, Phys.Chem. Chem. Phys. 19, 21446 (2017)

    Article  Google Scholar 

  60. 60.

    A. Pandy, Z. Yang, M. Gummalla, V.V. Atrazhev, N.Y. Kuzminyh, V.I. Sultanov, S. Burlatsky, J. Electrochem. Soc. 160, F972 (2013)

    CAS  Article  Google Scholar 

  61. 61.

    G. Cognard, G. Ozouf, C. Beauger, I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, M. Chatenet, F. Maillard, Electrocatalysis 8, 51 (2017)

    CAS  Article  Google Scholar 

  62. 62.

    G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.M. Titirici, J. Mater. Chem. A 4, 2581 (2016)

    CAS  Article  Google Scholar 

  63. 63.

    M.A. Molina-Garcia, N.V. Rees, RSC Adv. 6, 94669 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Funding information

This study was funded by the Russian Science Foundation (grant no. 14-23-00078).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandra Kuriganova.

Electronic supplementary material

ESM 1

(DOCX 188 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novikova, K., Kuriganova, A., Leontyev, I. et al. Influence of Carbon Support on Catalytic Layer Performance of Proton Exchange Membrane Fuel Cells. Electrocatalysis 9, 22–30 (2018). https://doi.org/10.1007/s12678-017-0416-4

Download citation

Keywords

  • PEM fuel cell
  • Pt/C
  • Carbon support
  • Carbon nanotubes
  • Catalytic layer structure