Skip to main content
Log in

Correlation Between Calcination Temperature and Bifunctional Catalytic Activity for Oxygen Electrode Reaction of Bismuth Ruthenate Pyrochlore in KOH Solution

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The oxygen electrode reactions (oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)) of the pyrochlore-type metal oxide containing Bi and Ru (BRO) were investigated. In this study, we report that the correlation between the calcination temperature and the bifunctional catalytic activity of BRO in a KOH aqueous solution. BRO was prepared by the co-precipitation method in aqueous medium using Bi(NO3)3, RuCl3, and NaOH and following the calcination at 500–700 °C. The characterization was carried out by synchrotron XRD and temperature-programmed reduction technique. It was found that the oxygen contents of BRO decreased with rising the calcination temperature. The catalytic behavior of BRO towards ORR and OER was evaluated by hydrodynamic voltammetry using a rotating disk electrode and a rotating ring-disk electrode technique. Tafel slopes for the ORR and OER decreased with an increase in the calcination temperature from 500 to 600 °C, while the onset potentials for both reactions were almost same. The results of this study suggest that the oxygen content of BRO is one of the factors that determine the catalytic activity for the oxygen electrode reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Imanishi, O. Yamamoto, Mater. Today 17, 24–30 (2014)

    Article  CAS  Google Scholar 

  2. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4269 (2004)

    Article  CAS  Google Scholar 

  3. M. Morimitsu, T. Kondo, K. Takano, Electrochemistry 5, 493–496 (2010)

    Article  Google Scholar 

  4. C. Baba, K. Kawaguchi, M. Morimitsu, Electrochemistry 83, 855–857 (2015)

    Article  CAS  Google Scholar 

  5. J.O.’.M. Bockris, T. Otagawa, J. Electrochem. Soc. 131, 290 (1984)

    Article  CAS  Google Scholar 

  6. Y. Shimizu, A. Nemoto, T. Hyodo, N. Miura, N. Yamazoe, Denki Kagaku 61, 1458 (1993)

    CAS  Google Scholar 

  7. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, Y. Shao-Horn, J. Electrochem. Soc. 157, B1263 (2010)

    Article  CAS  Google Scholar 

  8. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3, 546 (2011)

    Article  CAS  Google Scholar 

  9. M. Yuasa, K. Shimanoe, Y. Teraoka, N. Yamazoe, Electrochem. Solid-State Lett. 14, A67 (2011)

    Article  CAS  Google Scholar 

  10. M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 158, A605 (2011)

    Article  CAS  Google Scholar 

  11. K. Ono, T. Kinumoto, T. Tsumura, M. Toyoda, ECS Trans. 64(45), 29 (2015)

    Article  CAS  Google Scholar 

  12. N.M. Markovic, P.N. Ross Jr., J. Electrochem. Soc. 141, 2590 (1994)

    Article  CAS  Google Scholar 

  13. M.V. ten Kortenaar, J.F. Vente, D.J.W. Ijdo, S. Müller, R. Kötz, J. Power Sources 56, 51 (1995)

    Article  Google Scholar 

  14. K. Ono, T. Kinumoto, T. Tsumura, M. Toyoda, Extended Abstract for The 56th Battery Symposium in Japan, 1G07 (2015)

  15. T. Kinumoto, M. Eto, K. Ono, M. Matsuoka, T. Tsumura, M. Toyoda, ECS Trans. 75(52), 35 (2017)

    Article  Google Scholar 

  16. T. Otsubo, S. Takase, Y. Shimizu, ECS Trans. 3(1), 263 (2006)

    CAS  Google Scholar 

  17. T. Kinumoto, Y. Sou, K. Ono, M. Matsuoka, Y. Arai, T. Tsumura, M. Toyoda, J. Power Sources 273, 136 (2015)

    Article  CAS  Google Scholar 

  18. A.J. Bard, L. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (John Wiley and Sons, New York, 2001), pp. 331–367

    Google Scholar 

  19. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. 495, 134 (2001)

    Article  CAS  Google Scholar 

  20. T. Shinagawa, A.T.G. Esparza, K. Takanabe, Sci Rep (2015). doi:10.1038/srep13801

Download references

Acknowledgements

This work was supported by the “Advanced Low Carbon Technology Research and Development Program (ALCA), Development of Metal Hydride/Air Secondary Battery” of the Japan Science and Technology Agency (JST). AS-4 was generously supplied by the Tokuyama Corporation. The authors express gratitude to Mr. Shigekazu Yasuoka for supporting the synchrotron XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Kinumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinumoto, T., Ono, K., Eto, M. et al. Correlation Between Calcination Temperature and Bifunctional Catalytic Activity for Oxygen Electrode Reaction of Bismuth Ruthenate Pyrochlore in KOH Solution. Electrocatalysis 9, 146–152 (2018). https://doi.org/10.1007/s12678-017-0410-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0410-x

Keywords

Navigation