Skip to main content
Log in

The Selective Electrochemical Detection of Dopamine Using a Sulfated β-Cyclodextrin Carbon Paste Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The present work describes a novel approach for the determination of dopamine (DA) using carbon paste electrodes modified with sulfated β-cyclodextrin (S-β-CDCPE). The electrodes show high affinity towards DA electrochemical oxidation. DA returned a concentration detection range 5 × 10−7 M to 5 × 10−4 M and a detection limit of 1.33 × 10−7 M. DA, ascorbic acid (AA), and serotonin (5-HT) in a solution mixture can be simultaneously oxidized at significantly different potentials in the presence of S-β-CDCPE, while the unmodified CPE returned an overlapping response. In particular, S-β-CD-modified carbon paste microelectrode exhibits clear peak potential separations of 0.161, 0.101, and 0.258 V (vs. Ag/AgCl) for AA/DA, DA/5-HT, and AA/5-HT, respectively, in artificial cerebrospinal fluid (aCSF).

Schematic illustration of the electrochemical oxidation of DA in the presence of AA and 5-HT at mS-β- CDCPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.I. Nagy, G. Alagona, C. Ghio, Theoretical studies on the conformation of protonated dopamine in the gas phase and in aqueous solution. J. Am. Chem. Soc. 121, 4804–4481 (1999)

    Article  CAS  Google Scholar 

  2. R.M. Wightman, L.J. May, A.C. Michael, Detection of dopamine dynamics in the brain. Anal. Chem. 60, 769–779 (1988)

    Article  Google Scholar 

  3. M.A. Piggott, E.F. Marshall, N. Thomas, S. Lloyd, J.A. Court, E. Jaros, D. Burn, M. Johnson, R.H. Perry, I.G. McKeith, C. Ballard, E.K. Perry, Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer's and Parkinson's diseases: rostrocaudal distribution. Brain 122, 1449–1468 (1999)

    Article  Google Scholar 

  4. P. Seeman, H.B. Niznik, Dopamine-receptors and transporters in Parkinsons-disease and schizophrenia. FASEB J. 4, 2737–2744 (1990)

    CAS  Google Scholar 

  5. J.A. Stamford, P. Palij, C. Davidson, S.J. Trout, Fast cyclic voltammetry - neurotransmitter measurement in real-time and real-space. Bioelectrochem. Bioenerg. 38, 289–296 (1995)

    Article  CAS  Google Scholar 

  6. C. Davidson, E.H. Ellinwood, S.B. Douglas, T.H. Lee, Effect of cocaine, nomifensine, GBR 12909 and WIN 35428 on carbon fiber microelectrode sensitivity for voltammetric recording of dopamine. J. Neurosci. Meth. 101, 75–83 (2000)

    Article  CAS  Google Scholar 

  7. U. Yogeswaran, S.M. Chen, Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films. Electrochim. Acta 52, 5985–5996 (2007)

    Article  CAS  Google Scholar 

  8. Z. Nasri, E. Shams, Application of silica gel as an effective modifier for the voltammetric determination of dopamine in the presence of ascorbic acid and uric acid. Electrochim. Acta 54, 7416–7421 (2009)

    Article  CAS  Google Scholar 

  9. R.D. Oneill, Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in-vivo - a review. Analyst 119, 767–779 (1994)

    Article  CAS  Google Scholar 

  10. P. Hulthe, B. Hulthe, K. Johannessen, J. Engel, Decreased ascorbate sensitivity with Nafion-coated carbon-fiber electrodes in combination with copper(II) ions for the electrochemical determination of electroactive substances in vivo. Anal. Chim. Acta 198, 197–206 (1987)

    Article  CAS  Google Scholar 

  11. K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405, 3753–3771 (2013)

    Article  CAS  Google Scholar 

  12. K.T. Kawagoe, R.M. Wightman, Characterization of amperometry for in-vivo measurement of dopamine dynamics in the rat-brain. Talanta 41, 865–874 (1994)

    Article  CAS  Google Scholar 

  13. S. Palanisamy, S. Sakthinathan, S.M. Chen, B. Thirumalraj, T.H. Wu, B.S. Lou, X.H. Liu, Preparation of β-cyclodextrin entrapped graphite composite for sensitive detection of dopamine. Carbohyd. Polym. 135, 267–273 (2016)

    Article  CAS  Google Scholar 

  14. M. Chen, X.J. Wei, H. Qian, G.W. Diao, Fabrication of GNPs/CDSH-Fc/nafion modified electrode for the detection of dopamine in the presence of ascorbic acid. Mat. Sci. Eng. C-Mater 31, 1271–1277 (2011)

    Article  CAS  Google Scholar 

  15. G. Alarcon-Angeles, B. Perez-Lopez, M. Palomar-Pardave, M.T. Ramirez-Silva, S. Alegret, A. Merkoci, Enhanced host-guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 46, 898–906 (2008)

    Article  CAS  Google Scholar 

  16. C.C. Harley, A.D. Rooney, C.B. Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated beta-cyclodextrins. Sensors Actuators B Chem. 150, 498–504 (2010)

    Article  CAS  Google Scholar 

  17. J.J. Colleran, C.B. Breslin, Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD modified gold electrodes. J. Electroanal. Chem. 667, 30–37 (2012)

    Article  CAS  Google Scholar 

  18. G.R. Zhang, X.L. Wang, X.W. Shi, T.L. Sun, β-Cyclodextrin–ferrocene inclusion complex modified carbon paste electrode for amperometric determination of ascorbic acid. Talanta 51, 1019–1025 (2000)

    Article  Google Scholar 

  19. J.P. Lowry, M.G. Boutelle, M. Fillenz, Measurement of brain tissue oxygen at a carbon paste electrode can serve as an index of increases in regional cerebral blood flow. J. Neurosci. Meth 71, 177–182 (1997)

    Article  CAS  Google Scholar 

  20. M.D. Hawley, S.V. Tatawawa, S. Piekarsk, R.N. Adams, Electrochemical studies of oxidation pathways of catecholamines. J. Am. Chem. Soc. 89, 447–450 (1967)

    Article  CAS  Google Scholar 

  21. A.W. Sternson, R. Mccreery, B. Feinberg, R.N. Adams, Electrochemical studies of adrenergic neurotransmitters and related compounds. J. Electroanal. Chem. 46, 313–321 (1973)

    Article  CAS  Google Scholar 

  22. U.E. Majewska, K. Chmurski, K. Biesiada, A.R. Olszyna, R. Bilewicz, Dopamine oxidation at per(6-deoxy-6-thio)-alpha-cyclodextrin monolayer modified gold electrodes. Electroanalysis 18, 1463–1470 (2006)

    Article  CAS  Google Scholar 

  23. J. Armstrong, R.B. Barlow, Ionization of phenolic amines, including apomorphine, dopamine and catecholamines and an assessment of Zwitterion constants. Brit. J. Pharmacol 57, 501–516 (1976)

    Article  CAS  Google Scholar 

  24. G.P. Lewis, The importance of ionization in the activity of sympathomimetic amines. Brit. J. Pharm. Chemoth 9, 488–493 (1954)

    Article  CAS  Google Scholar 

  25. M. Aslanoglu, S. Abbasoglu, S. Karabulut, A. Kutluay, Electrochemical determination of dopamine in the presence of ascorbic acid using a poly(3-acetylthiophene) modified glassy carbon electrode. Acta Chim. Slov. 54, 834–839 (2007)

    CAS  Google Scholar 

  26. S. Corona-Avendano, G. Alarcon-Angeles, M.T. Ramirez-Silva, G. Rosquete-Pina, M. Romero-Romo, M. Palomar-Pardave, On the electrochemistry of dopamine in aqueous solution. Part I: the role of [SDS] on the voltammetric behavior of dopamine on a carbon paste electrode. J. Electroanal. Chem. 609, 17–26 (2007)

    Article  CAS  Google Scholar 

  27. K. Gmucova, M. Weis, D. Barancok, J. Cirak, P. Tomcik, J. Pavlasek, Ion selectivity of a poly(3-pentylmethoxythiophene) LB-layer modified carbon-fiber microelectrode as a consequence of the second order filtering in voltcoulometry. J. Biochem. Bioph. Meth 70, 385–390 (2007)

    Article  CAS  Google Scholar 

  28. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  29. B. Hemmateenejad, A. Safavi, F. Honarasa, Electrochemical study of weak inclusion complex interactions by simultaneous MCR-ALS analyses of potential step-chronoamperometric data matrices. Anal. Methods 4, 1776–1782 (2012)

    Article  CAS  Google Scholar 

  30. Z.N. Gao, X.L. Wen, H.L. Li, Study of the inclusion complexes of catecholamines with beta-cyclodextrin by cyclic voltammetry. Pol. J. Chem. 76, 1001–1007 (2002)

    CAS  Google Scholar 

  31. M.A. Kamyabi, F. Aghajanloo, Electrocatalytic response of dopamine at a carbon paste electrode modified with ferrocene. Croat. Chem. Acta 82, 599–606 (2009)

    CAS  Google Scholar 

  32. G.M. Hendy, C.B. Breslin, An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host. Electrochim. Acta 59, 290–295 (2012)

    Article  CAS  Google Scholar 

  33. R. Zhang, G.D. Jin, D. Chen, X.Y. Hu, Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors Actuators B Chem. 138, 174–181 (2009)

    Article  CAS  Google Scholar 

  34. X.H. Lin, Y.F. Zhang, W. Chen, P. Wu, Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (p-nitrobenzenazo resorcinol) modified glassy carbon electrode. Sensors Actuators B Chem. 122, 309–314 (2007)

    Article  CAS  Google Scholar 

  35. M.A. Dayton, A.G. Ewing, R.M. Wightman, Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions. Anal. Chem. 52, 2392–2396 (1980)

    Article  CAS  Google Scholar 

  36. A. Domenech, H. Garcia, M.T. Domenech-Carbo, M.S. Galletero, 2,4,6-Triphenylpyrylium ion encapsulated into zeolite Y as a selective electrode for the electrochemical determination of dopamine in the presence of ascorbic acid. Anal. Chem. 74, 562–569 (2002)

    Article  CAS  Google Scholar 

  37. R.N. Hegde, B.E.K. Swamy, N.P. Shetti, S.T. Nandibewoor, Electro-oxidation and determination of gabapentin at gold electrode. J. Electroanal. Chem. 635, 51–57 (2009)

    Article  CAS  Google Scholar 

  38. D. Jia, J.Y. Dai, H.Y. Yuan, L. Lei, D. Xiao, Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated beta-cyclodextrin modified glassy carbon electrode. Talanta 85, 2344–2351 (2011)

    Article  CAS  Google Scholar 

  39. X.Q. Tian, C.M. Cheng, H.Y. Yuan, J. Du, D. Xiao, S.P. Xie, M.M.F. Choi, Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-beta-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta 93, 79–85 (2012)

    Article  CAS  Google Scholar 

  40. F. Gonon, M. Buda, R. Cespuglio, M. Jouvet, J.F. Pujol, In vivo electrochemical detection of catechols in the neostriatum of anesthetized rats - dopamine or dopac. Nature 286, 902–904 (1980)

    Article  CAS  Google Scholar 

  41. F. Crespi, C. Mobius, In-vivo selective monitoring of basal levels of cerebral dopamine using voltammetry with nafion modified (Na-Cro) carbon-fiber microelectrodes. J. Neurosci. Meth 42, 149–161 (1992)

    Article  CAS  Google Scholar 

  42. J.A. Wei, J.B. He, S.Q. Cao, Y.W. Zhu, Y. Wang, G.P. Hang, Enhanced sensing of ascorbic acid, dopamine and serotonin at solid carbon paste electrode with a nonionic polymer film. Talanta 83, 190–196 (2010)

    Article  CAS  Google Scholar 

  43. X.H. Jiang, X.Q. Lin, Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal. Chim. Acta 537, 145–151 (2005)

    Article  CAS  Google Scholar 

  44. J. Li, X.Q. Lin, Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors Actuators B Chem. 124, 486–493 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gama Theophile Gnahore.

Electronic supplementary material

Scheme S1

(DOCX 57 kb).

Fig. S1

(DOCX 79 kb).

Table S1

(DOCX 11 kb).

Fig. S2

(DOCX 111 kb).

Fig. S3

(DOCX 45 kb).

Fig. S4

(DOCX 68 kb).

Fig. S5

(DOCX 109 kb).

Fig. S6

(DOCX 64 kb).

Fig. S7

(DOCX 33 kb).

Fig. S8

(DOCX 61 kb).

Fig. S9

(DOCX 39 kb).

Fig. S10

(DOCX 46 kb).

Fig. S11

(DOCX 75 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnahore, G.T., Velasco-Torrijos, T. & Colleran, J. The Selective Electrochemical Detection of Dopamine Using a Sulfated β-Cyclodextrin Carbon Paste Electrode. Electrocatalysis 8, 459–471 (2017). https://doi.org/10.1007/s12678-017-0402-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0402-x

Keywords

Navigation