Skip to main content
Log in

Water Structure and Mechanisms of Proton Discharge on Platinum Electrodes: Empirical Valence Bond Molecular Dynamics Trajectory Studies

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

We present a comparative analysis of molecular dynamics trajectory studies of the influence of surface charge, ion strength, and ion adsorption on the interfacial water structure and the possible pathways of proton transport and discharge on negatively charged platinum(111) electrodes. The model used is a reactive force field based on a nine-state empirical valence bond model. It incorporates both proton transfer between water molecules and simultaneous electron and proton transfer to the metal (discharge). The interfacial water polarization is the result of the competition between the electrical field influence of the smooth surface charge and the point-like local charges of adsorbed positive or negative ions, which leads to variations of the prevalent proton discharge pathways depending on system composition.

In trajectory calculations of proton adsorption and discharge from aqueous solutions onto charged platinum electrodes, the presence of electrolytes in the adsorbate layer influences proton discharge mechanisms via changes in water orientation and via exclusion of discharge sites through repulsive cation-proton interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Tafel, Zeitschrift für physikalische Chemie. 50, 641–712 (1905)

    CAS  Google Scholar 

  2. K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637–4678 (2004)

    Article  CAS  Google Scholar 

  3. M. Eikerling, A.A. Kornyshev, E. Spohr, in Proton-Conducting Polymer Electrolyte Membranes: Water and Structure in Charge. in Fuel Cells; Advances in Polymer Science, ed. by G. Scherer (Springer, Berlin, Heidelberg, 2008), pp. 15–54

    Google Scholar 

  4. N. Agmon, J. Phys. Chem. A. 109, 13–35 (2005). doi:10.1021/jp047465m

    Article  CAS  Google Scholar 

  5. G.A. Voth, Acc. Chem. Res. 39, 143–150 (2006). doi:10.1021/ar0402098

    Article  CAS  Google Scholar 

  6. D. Marx, Chem. Phys. Chem. 7(9), 1848–1870 (2006). doi:10.1002/cphc.200600128

    Article  CAS  Google Scholar 

  7. D. Marx, A. Chandra, M.E. Tuckerman, Chem. Rev. 110, 2174–2216 (2010). doi:10.1021/cr900233f

    Article  CAS  Google Scholar 

  8. T.C.J.D. von Grotthuss, Ann. Chim. LVIII, 54–74 (1806)

    Google Scholar 

  9. K. Tonigold, A. Groß, J. Comb. Chem. 33, 695–701 (2012). doi:10.1002/jcc.22900

    Article  CAS  Google Scholar 

  10. T. Roman, A. Groß, Catal. Today. 202, 183–190 (2013). doi:10.1016/j.cattod.2012.06.001

    Article  CAS  Google Scholar 

  11. T. Roman, A. Gross, Phys. Rev. Lett. 110, 156804 (2013)

    Article  Google Scholar 

  12. S. Sakong, K. Forster-Tonigold, A. Gross, J. Chem. Phys. 144, 194701 (2016)

    Article  Google Scholar 

  13. J. Cheng, J. VandeVondele, M. Sprik, J. Phys. Chem. C. 118, 5437–5444 (2014). doi:10.1021/jp500769q

    Article  CAS  Google Scholar 

  14. R.V. Mom, J. Cheng, M.T.M. Koper, M. Sprik, J. Phys. Chem. C. 118, 4095–4102 (2014). doi:10.1021/jp409373c

    Article  CAS  Google Scholar 

  15. J. Blumberger, K.P. McKenna, Phys. Chem. Chem. Phys. 15, 2184 (2013). doi:10.1039/c2cp42537h

    Article  CAS  Google Scholar 

  16. K.P. McKenna, J. Blumberger, Phys. Rev. B. 86, 245110 (2012). doi:10.1103/PhysRevB.86.245110

    Article  Google Scholar 

  17. M.-T. Nguyen, S. Piccinin, N. Seriani, R. Gebauer, ACS Catal. 5, 715–721 (2015). doi:10.1021/cs5017326

    Article  CAS  Google Scholar 

  18. M. Otani, O. Sugino, Phys. Rev. B. 73, 115407 (2006). doi:10.1103/PhysRevB.73.115407

    Article  Google Scholar 

  19. G.S. Karlberg, T.F. Jaramillo, E. Skulason, J. Rossmeisl, T. Bligaard, J.K. Norskov, Phys. Rev. Lett. 99, 126161 (2007). doi:10.1103/PhysRevLett.99.126101

    Article  Google Scholar 

  20. J. Rossmeisl, E. Skúlason, M.E. Björketun, V. Tripkovich, J.K. Nrskov, Chem. Phys. Lett. 466, 68–71 (2008). doi:10.1016/j.cplett.2008.10.024

    Article  CAS  Google Scholar 

  21. C.D. Taylor, S.A. Wasileski, J.-S. Filhol, M. Neurock, Phys. Rev. B. 73, 165402 (2006)

    Article  Google Scholar 

  22. J.-S. Filhol, M. Neurock, Angew. Chem. Int. Ed. 45, 402–406 (2006)

    Article  CAS  Google Scholar 

  23. Y.-H. Fang, G.-F. Wei, Z. Liu, Catal. Today. 202, 98–104 (2013)

    Article  CAS  Google Scholar 

  24. E. Santos, P. Quaino, W. Schmickler, Phys. Chem. Chem. Phys. 14(32), 11224–33 (2012). doi:10.1039/c2cp40717e

    Article  CAS  Google Scholar 

  25. M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, T. Ikeshoji, J. Phys. Soc. Jpn. 77, 024802 (2008). doi:10.1143/JPSJ.77.024802

    Article  Google Scholar 

  26. M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamotode, T. Ikeshojiae, Phys. Chem. Chem. Phys. 10, 3609–3612 (2008). doi:10.1039/b803541e

    Article  CAS  Google Scholar 

  27. T. Ikeshoji, M. Otani, I. Hamada, Y. Okamoto, PCCP. 13, 20223–20227 (2011)

    Article  CAS  Google Scholar 

  28. T. Ikeshoji, M. Otani, I. Hamada, O. Sugino, Y. Morikawa, Y. Okamoto, Y. Qian, I. Yagi, AIP Adv. 2, 032182 (2012). doi:10.1063/1.4756035

    Article  Google Scholar 

  29. F. Wilhelm, W. Schmickler, R.R. Nazmutdinov, E. Spohr, J. Phys. Chem. C. 112, 10814–10826 (2008)

    Article  CAS  Google Scholar 

  30. F. Wilhelm, W. Schmickler, R. Nazmutdinov, E. Spohr, Electrochim. Acta. 56, 10632–10644 (2011)

    Article  CAS  Google Scholar 

  31. F. Wilhelm, W. Schmickler, E. Spohr, J. Phys. Condens. Matter. 22, 175001 (2010)

    Article  Google Scholar 

  32. J. Wiebe, E. Spohr, Beilstein J., Nantotech. 5, 973–982 (2014). doi:10.3762/bjnano.5.111

    Google Scholar 

  33. J. Wiebe, K. Kravchenko, E. Spohr, Surf. Sci. 631, 35–41 (2015). doi:10.1016/j.susc.2014.06.016

    Article  CAS  Google Scholar 

  34. S. Walbran, A.A. Kornyshev, J. Chem. Phys. 114, 10039–10048 (2001)

    Article  CAS  Google Scholar 

  35. K. Heinzinger, P. Bopp, G. Jancsó, Acta Chir. Hung. 121, 27–53 (1985)

    Google Scholar 

  36. N. Garcia-Araez, V. Climent, E. Herrero, J. Feliu, J. Lipkowski, J. Electroanal. Chem. 576(1), 33–41 (2005). doi:10.1016/j.jelechem.2004.10.003

    Article  CAS  Google Scholar 

  37. F. Gossenberger, T. Roman, A. Groß, Electrochim. Acta. 216, 152–159 (2016). doi:10.1016/j.electacta.2016.08.117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed with financial support by DFG within the framework of the DFG Research Unit 1376 “Elementary reaction steps in electrocatalysis: Theory meets Experiment,” for which we thank the DFG. ES is also grateful for support by the Cluster of Excellence RESOLV (EXC1069) funded by the Deutsche Forschungsgemeinschaft. Computations were in part performed at the UDE Cray computer operated by CCSS and ZIM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Wiebe or Eckhard Spohr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiebe, J., Spohr, E. Water Structure and Mechanisms of Proton Discharge on Platinum Electrodes: Empirical Valence Bond Molecular Dynamics Trajectory Studies. Electrocatalysis 8, 637–646 (2017). https://doi.org/10.1007/s12678-017-0398-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0398-2

Keywords

Navigation