Skip to main content
Log in

Merging Empirical Valence Bond Theory with Quantum Chemistry to Model Proton Transfer Processes in Water

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Proton transfer processes in water are of fundamental importance for, among others, electrochemical proton discharge. Empirical valence bond (EVB) approaches were shown in the past to be a versatile tool for modeling complex phenomena such as proton discharge at metal electrodes. By replacing empirical fitting procedures with on-the-fly quantum chemistry (QC) calculations, we arrive at a transferable and systematically tunable description of proton transfer in water with EVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.A Marcus, J. Phys. Chem. 72, 891 (1968)

    Article  CAS  Google Scholar 

  2. C.J.D. von Grotthus, Ann. Chim. LVIII, 54 (1806)

    Google Scholar 

  3. D. Marx, Chem. Phys. Chem. 7(9), 1848–1870 (2006). doi:10.1002/cphc.200600128

    Article  CAS  Google Scholar 

  4. O. Pecina, W Schmickler, J. Electroanal. Chem. 431, 47–50 (1997)

    Article  CAS  Google Scholar 

  5. O. Pecina, W Schmickler, Chem. Phys. 228, 265–277 (1998)

    Article  CAS  Google Scholar 

  6. G.A Voth, Acc. Chem. Res. 39, 143–150 (2006). doi:10.1021/ar0402098

    Article  CAS  Google Scholar 

  7. A. Warshel, R.M Weiss, J. Am. Chem. Soc. 102, 6218 (1980)

    Article  CAS  Google Scholar 

  8. J. Lobaugh, G.A Voth, J. Chem. Phys. 104, 2056–2069 (1996)

    Article  CAS  Google Scholar 

  9. D.E. Sagnella, M.E Tuckerman, J. Chem. Phys. 108, 2073–2083 (1997)

    Article  Google Scholar 

  10. R. Vuilleumier, D. Borgis, J. Chem. Phys. 111, 4251–4266 (1999)

    Article  CAS  Google Scholar 

  11. U.W. Schmitt, G.A. Voth, J. Chem. Phys. 111, 9361–9381 (1999)

    Article  CAS  Google Scholar 

  12. U.W. Schmitt, G.A. Voth, J. Phys. Chem. B. 102, 5547–5551 (1998)

    Article  CAS  Google Scholar 

  13. Y. Wu, H. Chen, F. Wang, F. Paesani, G.A Voth, J. Phys. Chem. B. 112, 467–482 (2008). doi:10.1021/jp076658h

    Article  CAS  Google Scholar 

  14. S. Walbran, A.A Kornyshev, J. Chem. Phys. 114, 10039–10048 (2001)

    Article  CAS  Google Scholar 

  15. E. Spohr, P. Commer, A.A Kornyshev, J. Phys. Chem. B. 106, 10560–10569 (2002)

    Article  CAS  Google Scholar 

  16. S. Braun-Sand, A. Burykin, Z.T. Chu, A Warshel, J. Phys. Chem. B. 109, 583–592 (2005). doi:10.1021/jp0465783

    Article  CAS  Google Scholar 

  17. F. Wilhelm, W. Schmickler, R.R. Nazmutdinov, E. Spohr, J. Phys. Chem. C. 112, 10814–10826 (2008)

    Article  CAS  Google Scholar 

  18. F. Wilhelm, W. Schmickler, E. Spohr, J. Phys.: Condens. Matter. 22, 175001 (2010)

    Google Scholar 

  19. F. Wilhelm, W. Schmickler, R. Nazmutdinov, E. Spohr, Eletrochim. Acta. 56, 10632–10644 (2011)

    Article  CAS  Google Scholar 

  20. H.M. Senn, W Thiel, Angew. Chem. Int. Ed. 48, 1198 (2009)

    Article  CAS  Google Scholar 

  21. N. Bernstein, C. Varnai, I. Solt, S.A. Winfield, M.C. Payne, I. Simon, M. Fuxreiter, G Csanyi, Phys. Chem. Chem. Phys. 14, 646–656 (2012)

    Article  CAS  Google Scholar 

  22. S. Dohm, E. Spohr, M. Korth, J. Comput. Chem. 38, 51 (2017)

    Article  CAS  Google Scholar 

  23. J.P. Perdew, K. Burke, M Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  Google Scholar 

  24. F. Weigend, R Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)

    Article  CAS  Google Scholar 

  25. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  CAS  Google Scholar 

  26. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2(1), 73–78 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by DFG within the framework of the DFG Research Unit 1376 “Elementary reaction steps in electrocatalysis: Theory meets Experiment”. ES is also grateful for support by the Cluster of Excellence RESOLV (EXC1069) funded by the Deutsche Forschungsgemeinschaft. MK and SD would like to thank the Barbara Mez-Starck Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Korth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 275 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dohm, S., Spohr, E. & Korth, M. Merging Empirical Valence Bond Theory with Quantum Chemistry to Model Proton Transfer Processes in Water. Electrocatalysis 8, 630–636 (2017). https://doi.org/10.1007/s12678-017-0396-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0396-4

Keywords

Navigation