Oxygen Reduction Reaction Catalyzed by Small Gold Cluster on h-BN/Au(111) Support

Abstract

The catalytic activity for the oxygen reduction reaction (ORR) of a hexagonal boron nitride (h-BN) monolayer deposited on a Au(111) surface and decorated by a small planar Au8 cluster has been studied theoretically using density-functional theory. It is shown that gold nanoparticles (Au-NP) deposited on the h-BN/Au(111) surface can provide catalytically active sites for effective ORR at the perimeter interface with the support. Stabilization of oxygen at the perimeter interface between Au-NP and h-BN/Au(111) support promotes OOH* dissociation opening effective 4-electron pathway of ORR with formation of H2O. It is suggested that increase in the perimeter interface area between the supported Au-NP and the surface would result in increase of the ORR activity. Such increase in the perimeter interface area can be achieved by decreasing the size of Au-NP. Our calculations demonstrate the principal ability to functionalize inert materials such as stand-alone h-BN monolayer or Au surface for the ORR and open new way to design effective Pt-free catalysts for fuel cell technology.

?

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    CAS  Article  Google Scholar 

  2. 2.

    M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    H.A. Gasteiger, N.M. Marković, Science. 324, 48 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    N.M. Marković, T.J. Schmidt, V. Stamenković, P.N. Ross, Fuel Cells. 1, 105 (2001)

    Article  Google Scholar 

  5. 5.

    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science. 315, 493 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    M.D. Allendorf, Nature Energy. 1, 16058 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    G. Wu, P. Zelenay, Acc. Chem. Res. 46, 1878 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    W. Chen, J. Kim, S. Sun, S. Chen, J. Phys. Chem. C. 112, 3891 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 10, 638 (2010)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Shao, J. Liu, Y. Wang, Y. Lin, J. Mater. Chem. 19, 46 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3, 546 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    Y.J. Wang, D.P. Wilkinson, J. Zhang, Chem. Rev. 111, 7625 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    B. Cao, G.M. Veith, R.E. Diaz, J. Liu, E.A. Stach, R.R. Adzic, P.G. Khalifah, Angew. Chem. Int. Ed. 52, 10753 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Maekawa, A. Ishihara, J.H. Kim, S. Mitsushima, K.i. Ota, Electrochem. Solid-State Lett. 11, B109 (2008)

    CAS  Article  Google Scholar 

  15. 15.

    G. Zhong, H. Wang, H. Yu, F. Peng, Fuel Cells. 13, 387 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    U.I. Kramm, M. Lefévre, N. Larouche, D. Schmeisser, J.P. Dodelet, J. Am. Chem. Soc. 136, 978 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    E.F. Holby, P. Zelenay, Nano Energy. 29, 54 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    J.A. Varnell, E.C.M. Tse, C.E. Schulz, T.T. Fister, R.T. Haasch, J. Timoshenko, A.I. Frenkel, A.A. Gewirth, Nat. Comm. 7, 12582 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    M.J. Workman, M. Dzara, C. Ngo, S. Pylypenko, A. Serov, S. McKinney, J. Gordon, P. Atanassov, K. Artyushkova, J. Power. Sources. 348, 30 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    T. Wang, D. Gao, J. Zhuo, Z. Zhu, P. Papakonstantinou, Y. Li, M. Li, Chem. Eur. J. 19, 11939 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Hu, D.H.C. Chua, Sci. Rep. 6, 28088 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, J. Phys. Chem. B. 110, 1787 (2006)

    CAS  Article  Google Scholar 

  23. 23.

    J.i. Ozaki, T. Anahara, N. Kimura, A. Oya, Carbon. 44, 3358 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science. 323, 760 (2009)

    CAS  Article  Google Scholar 

  25. 25.

    R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. Int. ed. 49, 2565 (2010)

    CAS  Article  Google Scholar 

  26. 26.

    M. Zhou, H.L. Wang, S. Guo, Chem. Soc. Rev. 45, 1273 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J.i. Ozaki, J. Phys. Chem. C. 112, 14706 (2008)

    CAS  Article  Google Scholar 

  28. 28.

    T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J.i. Ozaki, S. Miyata, J. Phys. Chem. C. 114, 8933 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    L. Yu, X. Pan, X. Cao, P. Hu, X. Bao, J. Catal. 282, 183 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    L. Qu, Y. Liu, J.B. Baek, L. Dai, ACS Nano. 4, 1321 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    S.F. Huang, K. Terakura, T. Ozaki, T. Ikeda, M. Boero, M. Oshima, J.i. Ozaki, S. Miyata, Phys. Rev. B. 80, 235410 (2009)

    Article  Google Scholar 

  32. 32.

    R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Phys. Rev. Lett. 95, 127601 (2005)

    CAS  Article  Google Scholar 

  33. 33.

    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano. 4, 2979 (2010)

    CAS  Article  Google Scholar 

  34. 34.

    M. Gao, A. Lyalin, T. Taketsugu, Catalysts. 1, 18 (2011)

    CAS  Article  Google Scholar 

  35. 35.

    M. Gao, A. Lyalin, T. Taketsugu, J. Phys. Chem. C. 116, 9054 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    M. Gao, A. Lyalin, T. Taketsugu, Int. J. Quantum Chem. 113, 443 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    M. Gao, A. Lyalin, T. Taketsugu, J. Chem. Phys. 138, 034701 (2013)

    Article  Google Scholar 

  38. 38.

    A. Lyalin, M. Gao, T. Taketsugu, Chem. Rec. 16, 2324 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Phys. Chem. Chem. Phys. 15, 2809 (2013)

    CAS  Article  Google Scholar 

  40. 40.

    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, J. Phys. Chem. C. 117, 21359 (2013)

    CAS  Article  Google Scholar 

  41. 41.

    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Top. Catal. 57, 1032 (2014)

    CAS  Article  Google Scholar 

  42. 42.

    H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett. 10, 5049 (2010)

    CAS  Article  Google Scholar 

  43. 43.

    S. Azevedo, J.R. Kaschny, C.M. de Castilho, F. de Brito Mota, Eur. Phys. J. B. 67, 507 (2009)

  44. 44.

    A.B. Preobrajenski, A.S. Vinogradov, N. Mårtensson, Surf. Sci. 582, 21 (2005)

  45. 45.

    A.B. Preobrajenski, S.A. Krasnikov, A.S. Vinogradov, M.L. Ng, T. Käämbre, A.A. Cafolla, N. Mårtensson, Phys. Rev. B. 77, 085421 (2008)

    Article  Google Scholar 

  46. 46.

    A.B. Preobrajenski, A.S. Vinogradov, N. Mårtensson, Phys. Rev. B. 70, 165404 (2004)

    Article  Google Scholar 

  47. 47.

    K. Uosaki, G. Elumalai, H. Noguchi, T. Masuda, A. Lyalin, A. Nakayama, T. Taketsugu, J. Am. Chem. Soc. 136, 6542 (2014)

    CAS  Article  Google Scholar 

  48. 48.

    G. Elumalai, H. Noguchi, K. Uosaki, Phys. Chem. Chem. Phys. 16, 13755 (2014)

    CAS  Article  Google Scholar 

  49. 49.

    K. Uosaki, G. Elumalai, H.C. Dinh, A. Lyalin, T. Taketsugu, H. Noguchi, Sci. Rep. 6, 32217 (2016)

    CAS  Article  Google Scholar 

  50. 50.

    G. Elumalai, H. Noguchi, A. Lyalin, T. Taketsugu, K. Uosaki, Electrochem. Commun. 66, 53 (2016)

    CAS  Article  Google Scholar 

  51. 51.

    M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987)

    Article  Google Scholar 

  52. 52.

    M. Haruta, Catal. Today. 36, 153 (1997)

    CAS  Article  Google Scholar 

  53. 53.

    M. Haruta, Chem. Rec. 3, 75 (2003)

    CAS  Article  Google Scholar 

  54. 54.

    G.J. Hutchings, M. Brust, H. Schmidbaur, Chem. Soc. Rev. 37, 1759 (2008)

    CAS  Article  Google Scholar 

  55. 55.

    M. Haruta, Faraday Discuss. 152, 11 (2011)

    CAS  Article  Google Scholar 

  56. 56.

    Z. Wu, R.E. Cohen, Phys. Rev. B. 73, 235116 (2006)

    Article  Google Scholar 

  57. 57.

    F. Tran, R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B. 75, 115131 (2007)

    Article  Google Scholar 

  58. 58.

    R. Laskowski, P. Blaha, K. Schwarz, Phys. Rev. B. 78, 045409 (2008)

    Article  Google Scholar 

  59. 59.

    R. Laskowski, P. Blaha, Phys. Rev. B. 81, 075418 (2010)

    Article  Google Scholar 

  60. 60.

    M.H. Khan, S.S. Jamali, A. Lyalin, P.J. Molino, L. Jiang, H.K. Liu, T. Taketsugu, Z. Huang, Adv. Mater. 29, 1603937 (2017)

    Article  Google Scholar 

  61. 61.

    N. Troullier, J.L. Martins, Phys. Rev. B. 43, 1993 (1991)

    CAS  Article  Google Scholar 

  62. 62.

    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Article  Google Scholar 

  63. 63.

    D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  64. 64.

    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter. 14, 2745 (2002)

    CAS  Article  Google Scholar 

  65. 65.

    D. Sánchez-Portal, P. Ordejón, E. Canadell, Struct. Bond. 113, 103 (2004)

    Article  Google Scholar 

  66. 66.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B. 13, 5188 (1976)

    Article  Google Scholar 

  67. 67.

    C.S. Yoo, J. Akella, H. Cynn, M. Nicol, Phys. Rev. B. 56, 140 (1997)

    CAS  Article  Google Scholar 

  68. 68.

    R.W.G. Wyckoff, Crystal Structures, vol. 1 (John Wiley & Sons) (1963)

  69. 69.

    R. Bader, Atoms in molecules: a quantum theory (Oxford University Press New York) (1990)

  70. 70.

    G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006)

    Article  Google Scholar 

  71. 71.

    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B. 108, 17886 (2004)

    Article  Google Scholar 

  72. 72.

    T. Jacob, Fuel Cells. 06, 159 (2006)

    CAS  Article  Google Scholar 

  73. 73.

    J.A. Keith, G. Jerkiewicz, T. Jacob, Chem. Phys. Chem. 11, 2779 (2010)

    CAS  Article  Google Scholar 

  74. 74.

    J.A. Keith, T. Jacob, Angew. Chem. Int. Ed. 49, 9521 (2010)

    CAS  Article  Google Scholar 

  75. 75.

    B. Hammer, J. Nørskov, Surf. Sci. 343, 211 (1995)

    CAS  Article  Google Scholar 

  76. 76.

    B. Hammer, J.K. Nørskov, Adv. Catal. 45, 71 (2000)

    CAS  Google Scholar 

  77. 77.

    P. Vassilev, M.T.M. Koper, J. Phys. Chem. C. 111, 2607 (2007)

    CAS  Article  Google Scholar 

  78. 78.

    J. Rossmeisl, J.K. Nørskov, C.D. Taylor, M.J. Janik, M. Neurock, J. Phys. Chem. B. 110, 21833 (2006)

    CAS  Article  Google Scholar 

  79. 79.

    K.Y. Yeh, M.J. Janik, J. Comput. Chem. 32, 3399 (2011)

    CAS  Article  Google Scholar 

  80. 80.

    V. Tripković, E. Skúlason, S. Siahrostami, J.K. Nørskov, J. Rossmeisl, Electrochim. Acta. 55, 7975 (2010)

    Article  Google Scholar 

  81. 81.

    A. Lyalin, T. Taketsugu, J. Phys. Chem. C. 113, 12930 (2009)

    CAS  Article  Google Scholar 

  82. 82.

    A.P. Woodham, A. Fielicke, Angew. Chem. Int. Ed. 53, 6554 (2014)

    CAS  Article  Google Scholar 

  83. 83.

    M. Gao, D. Horita, Y. Ono, A. Lyalin, S. Maeda, T. Taketsugu, J. Phys. Chem. C. 121, 2661 (2017)

    CAS  Article  Google Scholar 

  84. 84.

    H. Häkkinen, B. Yoon, U. Landman, X. Li, H. Zhai, L. Wang, Phys. Chem. A. 107, 6168 (2003)

    Article  Google Scholar 

  85. 85.

    L. Xiao, B. Tollberg, X. Hu, L. Wang, J. Chem. Phys. 124, 114309 (2006)

    Article  Google Scholar 

  86. 86.

    B. Assadollahzadeh, P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009)

    Article  Google Scholar 

  87. 87.

    H. Häkkinen, U. Landman, J. Am. Chem. Soc. 123, 9704 (2001)

    Article  Google Scholar 

  88. 88.

    B. Yoon, H. Häkkinen, U. Landman, J. Phys. Chem. A. 107, 4066 (2003)

    CAS  Article  Google Scholar 

  89. 89.

    L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003)

    CAS  Article  Google Scholar 

  90. 90.

    H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem. Int. Ed. 42, 1297 (2003)

    Article  Google Scholar 

  91. 91.

    X. Ding, Z. Li, J. Yang, J.G. Hou, Q. Zhu, J. Chem. Phys. 120, 9594 (2004)

    CAS  Article  Google Scholar 

  92. 92.

    E. Fernández, P. Ordejón, L.C. Balbás, Chem. Phys. Lett. 408, 252 (2005)

    Article  Google Scholar 

  93. 93.

    R. Coquet, K.L. Howard, D.J. Willock, Chem. Soc. Rev. 37, 2046 (2008)

    CAS  Article  Google Scholar 

  94. 94.

    A. Lyalin, T. Taketsugu, J. Phys. Chem. Lett. 1, 1752 (2010)

    CAS  Article  Google Scholar 

  95. 95.

    J.L. Gland, B.A. Sexton, G.B. Fisher, Surf. Sci. 95, 587 (1980)

    CAS  Article  Google Scholar 

  96. 96.

    C. Campbell, G. Ertl, H. Kuipers, J. Segner, Surf. Sci. 107, 220 (1981)

    CAS  Article  Google Scholar 

  97. 97.

    P.D. Nolan, B.R. Lutz, P.L. Tanaka, J.E. Davis, C.B. Mullins, J. Chem. Phys. 111, 3696 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grants 15K05387 and 16KT0047); the FLAGSHIP2020 program supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan within the priority study5 (Development of new fundamental technologies for high-efficiency energy creation, conversion/storage and use); and the Development of Environmental Technology using Nanotechnology program from MEXT. The computations were performed at the Research Center for Computational Science, Okazaki, and the Numerical Materials Simulator at NIMS, Tsukuba, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrey Lyalin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyalin, A., Uosaki, K. & Taketsugu, T. Oxygen Reduction Reaction Catalyzed by Small Gold Cluster on h-BN/Au(111) Support. Electrocatalysis 9, 182–188 (2018). https://doi.org/10.1007/s12678-017-0395-5

Download citation

Keywords

  • Boron nitride
  • Gold nanocatalysis
  • Oxygen reduction reaction
  • Interface effects