Skip to main content
Log in

Influence of Diffusion Coefficient of Cobalt Redox Mediator Using Triphenylamine Dyes with Various Number of Anchoring Groups: Photovoltaic Performance of DSSCs

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The development of electrolytes containing a novel redox shuttle is essential for achieving highly efficient and stable dye-sensitized solar cells (DSSCs). Here, the effect of the diffusion coefficient of redox shuttles in the electrolyte on the photovoltaic performance of DSSCs using triphenylamine dyes by a different number of anchoring groups was investigated. Two different types of cobalt (II)/(III) polypyridine complexes, namely, [Co(bpy)3]2+/3+ and [Co(dtb)3]2+/3+ (where bpy = (2,2′-bipyridine) and dtb = (4,4′-di-tert-butyl-2,2′-bipyridine)), are applied to the hole transporting redox shuttles in DSSCs. Their diffusion coefficients are estimated by linear sweep voltammetry (LSV) at various scan rates. The diffusion coefficient of [Co(bpy)3]2+ and [Co(dtb)3]2+ in the prepared electrolyte are 1.91 × 10−7 and 2.27 × 10−8 cm2/s, respectively. The high diffusion coefficient of [Co(bpy)3]2+ leads to a high ionic conductivity of the electrolyte that is nearly two times higher than the [Co(dtb)3]2+/3+-based electrolyte. This [Co(bpy)3]2+/3+-based electrolyte leads to an increase in the DSSCs photovoltaic performance with an increase in electronic coupling with the organic dye and TiO2. This is due to the photovoltaic performance is not limited by the mass-transportation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)

    Article  CAS  Google Scholar 

  2. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

    Article  CAS  Google Scholar 

  3. B. O'Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  4. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  5. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242 (2014)

    Article  CAS  Google Scholar 

  6. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, L638 (2006)

    Article  CAS  Google Scholar 

  7. J.-Y. Kim, K.J. Lee, S.H. Kang, J. Shin, Y.-E. Sung, J. Phys. Chem. C 115, 19979 (2011)

    Article  CAS  Google Scholar 

  8. E. Mosconi, J.-H. Yum, F. Kessler, C.J. Gomez Garcia, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Am. Chem. Soc. 134, 19438 (2012)

    Article  CAS  Google Scholar 

  9. A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)

    Article  CAS  Google Scholar 

  10. J.-H. Yum, E. Baranoff, F. Kessler, T. Moehl, S. Ahmad, T. Bessho, A. Marchioro, E. Ghadiri, J.-E. Moser, C. Yi, M.K. Nazeeruddin, M. Grätzel, Nat. Commun. 3, 631 (2012)

    Article  Google Scholar 

  11. S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 132, 16714 (2010)

    Article  CAS  Google Scholar 

  12. S.M. Feldt, P.W. Lohse, F. Kessler, M.K. Nazeeruddin, M. Grätzel, G. Boschloo, A. Hagfeldt, Phys. Chem. Chem. Phys. 15, 7087 (2013)

    Article  CAS  Google Scholar 

  13. S.A. Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A. Bignozzi, J. Am. Chem. Soc. 124, 11215 (2002)

    Article  CAS  Google Scholar 

  14. Y. Liu, J.R. Jennings, Y. Huang, Q. Wang, S.M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C 115, 18847 (2011)

    Article  CAS  Google Scholar 

  15. S.M. Feldt, G. Wang, G. Boschloo, A. Hagfeldt, J. Phys. Chem. C 115, 21500 (2011)

    Article  CAS  Google Scholar 

  16. E.A. Gibson, A.L. Smeigh, L. Le Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt, L. Hammarstrom, Angew. Chem. Int. Ed. 48, 4402 (2009)

    Article  CAS  Google Scholar 

  17. S. Yanagida, Y. Yu, K. Manseki, Acc. Chem. Res. 42, 1827 (2009)

    Article  CAS  Google Scholar 

  18. J.J. Nelson, T.J. Amick, C.M. Elliott, J. Phys. Chem. C 112, 18255 (2008)

    Article  CAS  Google Scholar 

  19. D.K. Lee, K.-S. Ahn, T. Suresh, J.H. Kim, Dyes Pigments 117, 83 (2015)

    Article  CAS  Google Scholar 

  20. S.S. Park, Y.S. Won, Y.C. Choi, J.H. Kim, Energy Fuel 23, 3732 (2009)

    Article  CAS  Google Scholar 

  21. C.H. Lee, H.J. Yun, M.R. Jung, J.G. Lee, S.H. Kim, J.H. Kim, Electrochim. Acta 138, 148 (2014)

    Article  CAS  Google Scholar 

  22. T.H. Nguyen, T. Suresh, J.H. Kim, Org. Electron. 30, 40 (2016)

    Article  CAS  Google Scholar 

  23. A.J. Bard, L.R. Faulkner, Electrochemical Methods (Wiley, New York, 2001)

    Google Scholar 

  24. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy (Wiley Interscience, New York, 2005)

    Book  Google Scholar 

  25. J.H. Cheon, S.A. Kim, K.S. Ahn, M.S. Kang, J.H. Kim, Electrochim. Acta 68, 240 (2012)

    Article  CAS  Google Scholar 

  26. R. Cheruku, G. Govindaraj, L. Vijayan, Mater. Chem. Phys. 141, 620–628 (2013)

    Article  CAS  Google Scholar 

  27. R. Cheruku, G. Kruthika, G. Govindaraj, L. Vijayan, J. Phys. Chem. Solids 86, 27 (2015)

    Article  CAS  Google Scholar 

  28. M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005)

    Article  CAS  Google Scholar 

  29. J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Adv. Mater. 22, E210 (2010)

    Article  CAS  Google Scholar 

  30. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C 111, 6550 (2007)

    Article  CAS  Google Scholar 

  31. Q. Wang, J.-E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945 (2005)

    Article  CAS  Google Scholar 

  32. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta 47, 4213 (2002)

    Article  CAS  Google Scholar 

  33. V. González-Pedro, X. Xu, I. Mora-Seró, J. Bisquert, ACS Nano 4, 5783 (2010)

    Article  Google Scholar 

  34. M.H. Jung, M.G. Kang, J. Mater. Chem. 21, 2694 (2011)

    Article  CAS  Google Scholar 

  35. H.J. Yun, T. Paik, M.E. Edley, J.B. Baxter, C.B. Murray, ACS Appl. Mater. Interfaces 6, 3721 (2014)

    Article  CAS  Google Scholar 

  36. H.J. Yun, H. Lee, J.B. Joo, W. Kim, J. Yi, J. Phys. Chem. C 113, 3050 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20163030013800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Cheruku or Jae Hong Kim.

Electronic supplementary material

Fig S1

(DOCX 52 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, H.J., Hai, N.T., Min, C.J. et al. Influence of Diffusion Coefficient of Cobalt Redox Mediator Using Triphenylamine Dyes with Various Number of Anchoring Groups: Photovoltaic Performance of DSSCs. Electrocatalysis 8, 414–421 (2017). https://doi.org/10.1007/s12678-017-0388-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0388-4

Keywords

Navigation