Skip to main content

Effect of Magnetic Field on HER of Water Electrolysis on Ni–W Alloy

Abstract

Electroactive Ni–W alloy coating with a specific composition was developed as an efficient electrode material for hydrogen evolution reaction (HER) through electrodeposition technique. The high overvoltage towards HER at the electrode surface was reduced by an applied magnetic field during water electrolysis. The effect of introduced magnetic was studied under different applied magnetic field strengths (varying from 0.1 T to 0.4 T) to epitomize the HER efficiency. The enhancement in HER efficiency of the Ni–W alloy electrode in the presence of the applied magnetic field was established through electrochemical analysis and also by quantifying the amount of H2 gas evolved during the analysis. The improvement in HER efficiency of Ni–W alloy under induced magnetic field may be attributed to the magnetohydrodynamic (MHD) force-induced convection and H2 bubble disentanglement. The coating was characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analyses. The magnetic field-induced efficient water electrolysis is explained with plausible mechanisms, and the results are discussed.

Magnetic field-induced efficient hydrogen evolution reaction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A.K. Yadav, D. Bhattacharyya, S.N. Jha, A. Miotello, D.C. Kothari, Appl. Catal. B Environ. 192, 126–133 (2016)

    CAS  Article  Google Scholar 

  2. J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He, A.M. Asiri, J. Mater. Chem. A 3, 20056–20059 (2015)

    CAS  Article  Google Scholar 

  3. J.A. Turner, Science 285, 687–689 (1999)

    CAS  Article  Google Scholar 

  4. P.P. Edwards, V.L. Kuznetsov, W.I. David, N.P. Brandon, Energy Policy 36, 4356–4362 (2008)

    Article  Google Scholar 

  5. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S.Z. Qiao, Nat. Commun. 5 (2014)

  6. Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu, C.-G. Liu, Appl. Surf. Sci. 384, 51–57 (2016)

    CAS  Article  Google Scholar 

  7. W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Nano Energy 28, 29 (2016)

    CAS  Article  Google Scholar 

  8. K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 36, 307–326 (2010)

    CAS  Article  Google Scholar 

  9. M. Balat, Int. J. Hydrog. Energy 33, 4013–4029 (2008)

    CAS  Article  Google Scholar 

  10. A. Aho, M. Antonietti, S. Arndt, M. Behrens, E. Bill, A. Brandner, G. Centi, P. Claus, N. Cox, S. DeBeer, others, Chemical Energy Storage, Walter de Gruyter (2013)

  11. R.A. Huggins, Energy storage, (Springer, 2010)

  12. C. Wu, J. Li, D. Zhang, B. Yang, L. Li, T. Zhou, C. Zhang, G. Yang, Y. Shan, Int. J. Hydrog. Energy 41, 13915–13922 (2016)

    CAS  Article  Google Scholar 

  13. M. Wang, Z. Wang, X. Gong, Z. Guo, Renewable and Sustainable Energy Rev. 29, 573–588 (2014)

    CAS  Article  Google Scholar 

  14. L. Elias, A.C. Hegde, RSC Adv. 6, 66204–66214 (2016)

    CAS  Article  Google Scholar 

  15. B.V. Tilak, A.C. Ramamurthy and B.E. Conway, High performance electrode materials for the hydrogen evolution reaction from alkaline media, In: Proceedings of the Indian Academy of Sciences-Chemical Sciences, (Springer, 1986), 359–393.

  16. B. Keita, L. Nadjo, J. Electroanal, Chem. Interfacial Electrochem. 191, 441–448 (1985)

    CAS  Article  Google Scholar 

  17. O. Wassef, T.Z. Fahidy, Electrochim. Acta 21, 727 (1976)

    CAS  Article  Google Scholar 

  18. M. Shen, N. Bennett, Y. Ding, K. Scott, Int. J. Hydrog. Energy 36, 14335–14341 (2011)

    CAS  Article  Google Scholar 

  19. R.-G. Cong, Renew. Sust. Energ. Rev. 17, 94–103 (2013)

    Article  Google Scholar 

  20. D. Kiuchi, H. Matsushima, Y. Fukunaka, K. Kuribayashi, J. Electrochem. Soc. 153, E138–E143 (2006)

    CAS  Article  Google Scholar 

  21. T.Z. Fahidy, J. Appl. Electrochem. 13, 553–563 (1983)

    CAS  Article  Google Scholar 

  22. S.R. Ragsdale, K.M. Grant, H.S. White, J. Am. Chem. Soc. 120, 13461–13468 (1998)

    CAS  Article  Google Scholar 

  23. L.M. Monzon, J.M.D. Coey, Electrochem. Commun. 42, 38–41 (2014)

    CAS  Article  Google Scholar 

  24. R.A. Tacken, L.J.J. Janssen, J. Appl. Electrochem. 25, 1–5 (1995)

    CAS  Article  Google Scholar 

  25. V. Ganesh, D. Vijayaraghavan, V. Lakshminarayanan, Appl. Surf. Sci. 240, 286–295 (2005)

    CAS  Article  Google Scholar 

  26. M.-Y. Lin, L.-W. Hourng, C.-W. Kuo, Int. J. Hydrog. Energy 37, 1311–1320 (2012)

    CAS  Article  Google Scholar 

  27. M.-Y. Lin, L.-W. Hourng, Int. J. Energy Res. 38, 106–116 (2014)

    CAS  Article  Google Scholar 

  28. L. Elias, A.C. Hegde, Electrochim. Acta 219, 377 (2016)

    CAS  Article  Google Scholar 

  29. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Electrochim. Acta 82, 384 (2012)

    CAS  Article  Google Scholar 

  30. T. Iida, H. Matsushima, Y. Fukunaka, J. Electrochem. Soc. 154, E112 (2007)

    CAS  Article  Google Scholar 

  31. H. Matsushima, D. Kiuchi, Y. Fukunaka, Electrochim. Acta 54, 5858 (2009)

    CAS  Article  Google Scholar 

  32. O. Aaboubi, Int. J. Hydrog. Energy 36, 4702 (2011)

    CAS  Article  Google Scholar 

  33. O. Devos, O. Aaboubi, J.-P. Chopart, A. Olivier, C. Gabrielli, B. Tribollet, J. Phys. Chem. A 104, 1544 (2000)

    CAS  Article  Google Scholar 

  34. S. Shetty and A. C. Hegde, Electrocatalysis 1 (2017)

  35. L. Elias, P. Cao, A.C. Hegde, RSC Adv. 6, 111358 (2016)

    CAS  Article  Google Scholar 

  36. L. Elias, K. Scott, A.C. Hegde, J. of Mater. Eng. Perform. 24, 4182–4191 (2015)

    CAS  Article  Google Scholar 

  37. L. Elias, A.C. Hegde, Surf. Coat. Technol. 283, 61–69 (2015)

    CAS  Article  Google Scholar 

  38. M.Q. Argañaraz, S.B. Ribotta, M.E. Folquer, G. Benítez, A. Rubert, L.M. Gassa, M.E. Vela, R.C. Salvarezza, J. Solid State, Electrochem. 17, 307–313 (2013)

    Google Scholar 

  39. M.Q. Argañaraz, S.B. Ribotta, M.E. Folquer, E. Zelaya, C. Llorente, J.M. Ramallo-López, G. Benítez, A. Rubert, L.M. Gassa, M.E. Vela, et al., Electrochim. Acta 72, 87–93 (2012)

    Article  Google Scholar 

  40. R. Juškėnas, I. Valsiūnas, V. Pakštas, A. Selskis, V. Jasulaitienė, V. Karpavičienė, V. Kapočius, Appl. Surf. Sci. 253, 1435–1442 (2006)

    Article  Google Scholar 

  41. C.-C. Hu, Y.-S. Lee, T.-C. Wen, Mater. Chem. Phys. 48, 246–254 (1997)

    CAS  Article  Google Scholar 

  42. S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H.-J. Kim, J.H. Jang, S.W. Nam, T.-H. Lim, T. Lim, S.-K. Kim, et al., J. Mater. Chem. 22, 15153–15159 (2012)

    CAS  Article  Google Scholar 

  43. M. Waskaas, Y.I. Kharkats, J. Phys. Chem. B 103, 4876–4883 (1999)

    CAS  Article  Google Scholar 

  44. D. Zhang, K. Zeng, Ind. Eng. Chem. Res. 51, 13825 (2012)

    CAS  Article  Google Scholar 

  45. O. Aaboubi, J.P. Chopart, J. Douglade, A. Olivier, C. Gabrielli, B. Tribollet, J. Electrochem. Soc. 137, 1796 (1990)

    CAS  Article  Google Scholar 

  46. J.A. Koza, S. Mühlenhoff, P. Żabiński, P.A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz, S. Odenbach, Electrochim. Acta 56, 2665–2675 (2011)

    CAS  Article  Google Scholar 

  47. S. Mohanta, T.Z. Fahidy, Can. J. Chem. Eng. 50, 248 (1972)

    CAS  Article  Google Scholar 

  48. Z.H. Gu, T.Z. Fahidy, J. Electrochem. Soc. 134, 2241 (1987)

    CAS  Article  Google Scholar 

  49. M.C. Weston, M.D. Gerner, I. Fritsch, Anal. Chem. 82, 3411 (2010)

    CAS  Article  Google Scholar 

  50. C. Brett, M. O. Brett, A. M. C. M. Brett, and A.M.O. Brett, Electrochemistry: Principles, Methods, and Applications (1993)

  51. A. Bund, S. Koehler, H.H. Kuehnlein, W. Plieth, Electrochim. Acta 49, 147 (2003)

    CAS  Article  Google Scholar 

  52. L. Elias, A.C. Hegde, J. Alloys Compd. 712, 618 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Mr. Liju Elias is grateful to the National Institute of Technology Karnataka (NITK), Surathkal, India for providing the facilities for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chitharanjan Hegde.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elias, L., Chitharanjan Hegde, A. Effect of Magnetic Field on HER of Water Electrolysis on Ni–W Alloy. Electrocatalysis 8, 375–382 (2017). https://doi.org/10.1007/s12678-017-0382-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0382-x

Keywords

  • Electrodeposition
  • HER
  • Magnetic field
  • MHD effect
  • Ni–W alloy