Skip to main content
Log in

Electrocatalytic Oxidation of Formate and Formic Acid on Platinum and Gold: Study of pH Dependence with Phosphate Buffers

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The effect of electrolyte pH on the electrooxidation of formic acid/formate is studied using cyclic voltammetry on polycrystalline rotating disk and single-crystalline Pt and Au electrodes in phosphate-based solutions over a wide range of pH (1–12). A non-linear relationship between oxidation current and pH at constant overpotential is identified for both metals. Surface structure influences the reaction for both Pt and Au electrodes. The results in terms of pH dependence are in agreement with those reported in literature. However, experimental evidence shows that adsorbed phosphates cause dramatic changes in the behaviour of the oxidation of formic acid on Pt and Au electrodes due to site blocking and competitive adsorption. The pH dependence on the catalytic activity for formic acid oxidation on Pt is more complex, due to the poisoning of the electrodes by adsorbed CO in addition to intricate anion adsorption effects. The role of the phosphates in the electrocatalyzed reaction is more than maintaining the pH of the system. Rather, various phosphate anions strongly adsorb on the surface, block reactive surface sites and quantitatively decrease oxidation currents. The blocking effect of the phosphate anions increases with increasing pH value. A more considerable blocking effect is established for Au. In addition, a strong pH dependence on overpotential is identified for Pt. In general, oxidation kinetics of formic acid depends strongly on pH, the nature of the adsorbed phosphate species and the electrode potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Salzer, Zeitschrift Für Elektrotechnik Und Elektrochemie 8, 893 (1902)

    Article  Google Scholar 

  2. E.A. Braude, F.C. Nachod, J.G. Hoffman, Phys. Today 9, 22 (1956)

    Article  Google Scholar 

  3. R.P. Buck, L.R. Griffith, J. Electrochem. Soc. 109, 1005 (1962)

    Article  CAS  Google Scholar 

  4. R.R. Adzic, M.I. Hofman, D.M. Draizic, J. Electroanal. Chem. 110, 361 (1980)

    Article  CAS  Google Scholar 

  5. S. Chert, B. Wu, and C. Cha, 431, 243 (1997).

  6. J. Xiang, B.-L. Wu, S.-L. Chen, J. Electroanal. Chem. 517, 95 (2001)

    Article  CAS  Google Scholar 

  7. J.L. Haan, R.I. Masel, Electrochim. Acta 54, 4073 (2009)

    Article  CAS  Google Scholar 

  8. H.D. John, J. Wang, H. Rus, E.D. Abruna, J. Phys. Chem. 116, 5810 (2012)

    Article  CAS  Google Scholar 

  9. J. Jiang, J. Scott, A. Wieckowski, Electrochim. Acta 104, 124 (2013)

    Article  CAS  Google Scholar 

  10. J. Joo, T. Uchida, A. Cuesta, M.T.M. Koper, M. Osawa, J. Am. Chem. Soc. 135, 4 (2013)

    Article  Google Scholar 

  11. J. Joo, T. Uchida, A. Cuesta, M.T.M. Koper, M. Osawa, Electrochim. Acta 129, 127 (2014)

    Article  CAS  Google Scholar 

  12. J.V. Perales-Rondón, S. Brimaud, J. Solla-Gullón, E. Herrero, R. Jürgen Behm, J.M. Feliu, Electrochim. Acta 180, 479 (2015)

    Article  Google Scholar 

  13. M.T.M. Koper, Chem. Sci. 4, 2710 (2013)

    Article  CAS  Google Scholar 

  14. S. Brimaud, J. Solla-Gullón, I. Weber, J.M. Feliu, R.J. Behm, ChemElectroChem 1, 1075 (2014)

    Article  CAS  Google Scholar 

  15. A. Capon, R. Parson, J. Electroanal. Chem. Interfacial Electrochem. 44, 1 (1973)

    Article  CAS  Google Scholar 

  16. B. Beden, A. Bewick, C. Lamy, J. Electroanal. Chem. 150, 505 (1983)

    Article  CAS  Google Scholar 

  17. B. Beden, C. Lamy, N.R. de Tacconi, A.J. Arvia, Electrochim. Acta 35, 691 (1990)

    Article  CAS  Google Scholar 

  18. G. Samjeské, M. Osawa, Angew, Chemie - Int. Ed. 44, 5694 (2005)

    Article  Google Scholar 

  19. Y.X. Chen, S. Ye, M. Heinen, Z. Jusys, M. Osawa, R.J. Behm, J. Phys. Chem. B 110, 9534 (2006)

    Article  CAS  Google Scholar 

  20. Y.-X. Chen, M. Heinen, Z. Jusys, R.J. Behm, ChemPhysChem 8, 380 (2007)

    Article  CAS  Google Scholar 

  21. T.D. Jarvi, E.M. Stuve, Electrocatalysis (Wiley, New York, 1998), pp. 75–133

    Google Scholar 

  22. T. Iwasita, E. Pastor, Interfacial Electrochem. Theory, Princ. Appl (Marcel Dekker, Inc., New York, Basel, 1999), pp. 353–373

    Google Scholar 

  23. M.R. Columbia, P.A. Thiel, J. Electroanal. Chem. 369, 1 (1994)

    Article  CAS  Google Scholar 

  24. G. Crépy, C. Lamy, S. Maximovitch, J. Electroanal. Chem. 54, 161 (1974)

    Article  Google Scholar 

  25. G. Samjeské, A. Miki, S. Ye, M. Osawa, J. Phys. Chem. B 110, 16559 (2006)

    Article  Google Scholar 

  26. A. Miki, S. Ye, M. Osawa, Chem. Commun. 14, 1500 (2002)

    Article  Google Scholar 

  27. Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Angew, Chemie - Int. Ed. 45, 981 (2006)

    Article  CAS  Google Scholar 

  28. Y. Chen, M. Heinen, Z. Jusys, R.J. Behm, Langmuir 22, 10399 (2006)

    Article  CAS  Google Scholar 

  29. M. Neurock, M. Janik, A. Wieckowski, Faraday Discuss. 140, 363 (2009)

    Article  Google Scholar 

  30. W. Gao, J.A. Keith, J. Anton, T. Jacob, J. Am. Chem. Soc. 132, 18377 (2010)

    Article  Google Scholar 

  31. L.A. Kibler, M. Al-Shakran, J. Phys. Chem. C 120, 16238 (2016)

    Article  CAS  Google Scholar 

  32. V. Grozovski, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, ChemPhysChem 12, 1641 (2011)

    Article  CAS  Google Scholar 

  33. A. Capon, R. Parsons, J. Electroanal. Chem. Interfacial Electrochem. 44, 239 (1973)

    Article  CAS  Google Scholar 

  34. H. H. Brongersma and R. A. van Santen, editors, Fundamental Aspects of Heterogeneous Catalysis Studied by Particle Beams (Springer US, Boston, MA, 1991).

  35. T. Reda, C.M. Plugge, N.J. Abram, J. Hirst, Proc. Natl. Acad. Sci. 105, 10654 (2008)

    Article  CAS  Google Scholar 

  36. T. Iwasita, F. Nart, H. Gerischer, Advances in Electrochemical Science and Engineering (Wiley, Weinheim, 1995)

    Google Scholar 

  37. F. Silva, M.J. Sottomayor, A. Martins, J. Electroanal. Chem. 375, 395 (1994)

    Article  CAS  Google Scholar 

  38. M. Weber, F.C. Nart, Electrochim. Acta 41, 653 (1996)

    Article  CAS  Google Scholar 

  39. F.C. Nart, T. Iwasita, Electrochim. Acta 37, 385 (1992)

    Article  CAS  Google Scholar 

  40. L.M.C. Pinto, P. Quaino, M.D. Arce, E. Santos, W. Schmickler, ChemPhysChem 15, 2003 (2014)

    Article  CAS  Google Scholar 

  41. V. Climent, R. Gómez, J.M. Orts, J.M. Feliu, J. Phys. Chem. B 110, 11344 (2006)

    Article  CAS  Google Scholar 

  42. M. Weber, F.C. Nart, I.R. de Moraes, T. Iwasita, J. Phys. Chem. 100, 19933 (1996)

    Article  CAS  Google Scholar 

  43. M. Weber, I.R. de Moraes, A.J. Motheo, F.C. Nart, Colloids Surfaces A Physicochem. Eng. Asp. 134, 103 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG Research Unit For-1376, Ki 787/6-1 and 6-2) and by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig A. Kibler.

Electronic supplementary material

ESM 1

(DOC 5270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, A., Hermann, J.M. & Kibler, L.A. Electrocatalytic Oxidation of Formate and Formic Acid on Platinum and Gold: Study of pH Dependence with Phosphate Buffers. Electrocatalysis 8, 509–517 (2017). https://doi.org/10.1007/s12678-017-0380-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0380-z

Keywords

Navigation