Skip to main content

New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals

Abstract

The energy efficiency of polymer electrolyte membrane fuel cells is mainly limited by overpotentials related to the oxygen reduction reaction (ORR). In this paper, we present new platinum alloys which are active for the ORR and based on alloying Pt with very abundant elements, such as Ca. Theoretical calculations suggested that Pt5Ca and Pt5Sr should be active for the ORR. Electrochemical measurements show that the activity of sputter-cleaned polycrystalline Pt5Ca and Pt5Sr electrodes is enhanced by a factor of 5–7 relative to polycrystalline Pt. Accelerated stability testing shows that after 10,000 electrochemical cycles, the alloys still retain over half their activity. The stability is thus not quite on par with the similar Pt-lanthanide alloys, possibly due to the somewhat lower heat of formation.

Left: The structure of Pt5Ca with a compressed Pt overlayer. The compression increases activity for the Oxygen Reduction Reaction (ORR). Right: The measured ORR activity of the best Platinum alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    A. Kongkanand, M.F. Mathias, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chemie Int. Ed. 44, 2132–2135 (2005)

    CAS  Article  Google Scholar 

  4. 4.

    V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chemie Int. Ed. 45, 2897–2901 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    U. Eberle, B. Mu̇ller, R. von Helmolt, Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ. Sci. 5, 8780–8798 (2012)

    Article  Google Scholar 

  8. 8.

    I.E.L. Stephens, A.S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999)

    CAS  Article  Google Scholar 

  10. 10.

    V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–9 (2006)

    CAS  Article  Google Scholar 

  11. 11.

    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markoviċ, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science. 315, 493–497 (2007)

    CAS  Article  Google Scholar 

  12. 12.

    S. Chen, H.A. Gasteiger, K. Hayakawa, T. Tada, Y. Shao-Horn, Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 157, A82–A87 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H.L. Xin, J.D. Snyder, D. Li, J.A. Herron, M. Mavrikakis, M. Chi, K.L. More, Y. Li, N.M. Markovic, G.A. Somorjai, P. Yang, V.R. Stamenkovic, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science. 343, 1339–43 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009)

    CAS  Article  Google Scholar 

  15. 15.

    M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Grønbjerg, B.P. Knudsen, A.K. Jepsen, J. Rossmeisl, I.E.L. Stephens, I Chorkendorff, Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J. Am. Chem. Soc. 134(16), 476–9 (2012)

    Google Scholar 

  16. 16.

    P. Hernandez-Fernandez, F. Masini, D.N. McCarthy, C.E. Strebel, D. Friebel, D. Deiana, P. Malacrida, A. Nierhoff, A. Bodin, A.M. Wise, J.H. Nielsen, T.W. Hansen, A. Nilsson, I.E.L. Stephens, I. Chorkendorff, Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 6, 732–738 (2014)

    CAS  Google Scholar 

  17. 17.

    A. Velȧzquez-Palenzuela, F. Masini, A.F. Pedersen, M. Escudero-Escribano, D. Deiana, P. Malacrida, T.W. Hansen, D. Friebel, A. Nilsson, I.E.L. Stephens, I. Chorkendorff, The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. 328, 297–307 (2015)

    Article  Google Scholar 

  18. 18.

    I.E.L. Stephens, A.S. Bondarenko, L. Bech, I. Chorkendorff, Oxygen electroreduction activity and X-ray photoelectron spectroscopy of platinum and early transition metal alloys. ChemCatChem. 4, 341–349 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    P. Malacrida, M. Escudero-Escribano, A. Verdaguer-Casadevall, I.E.L. Stephens, I. Chorkendorff, Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase. J. Mater. Chem. A. 2, 4234 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    M. Escudero-Escribano, P. Malacrida, M.H. Hansen, U.G. Vej-Hansen, A. Velȧzquez-Palenzuela, V. Tripkovic, J. Schiøtz, J. Rossmeisl, I.E.L. Stephens, I. Chorkendorff, Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science. 352, 73–76 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    F. Maroun, F. Ozanam, O.M. Magnussen, R.J Behm, The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science. 293, 1811–1814 (2001)

    CAS  Article  Google Scholar 

  22. 22.

    D. Strmcnik, M. Escudero-Escribano, K. Kodama, V. R. Stamenkovic, A. Cuesta, N.M. Markoviċ, Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2, 880–885 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    A. Cuesta, Atomic ensemble effects in electrocatalysis: The site-knockout strategy. ChemPhysChem. 12, 2375–2385 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998)

    Article  Google Scholar 

  25. 25.

    A. Schlapka, M. Lischka, A. Groß, U. Kȧsberger, P. Jakob, Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys. Rev. Lett. 91(016), 101 (2003)

    Google Scholar 

  26. 26.

    L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chemie. Int. Ed. 44, 2080–2084 (2005)

    CAS  Article  Google Scholar 

  27. 27.

    M. Lischka, C. Mosch, A. Groß, Tuning catalytic properties of bimetallic surfaces: oxygen adsorption on pseudomorphic Pt/Ru overlayers. Electrochim. Acta. 52, 2219–2228 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3D transition metals. J. Chem. Phys. 120(10), 240–6 (2004)

    Google Scholar 

  29. 29.

    I.E.L. Stephens, A.S. Bondarenko, F.J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T.P. Johansson, A.K. Jepsen, R. Frydendal, B.P. Knudsen, J. Rossmeisl, I. Chorkendorff, Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–91 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    H.E. Hoster, O.B. Alves, M.T.M. Koper, Tuning adsorption via strain and vertical ligand effects. ChemPhysChem. 11, 1518–24 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    J. Rossmeisl, G.S. Karlberg, T.F. Jaramillo, J.K. Nørskov, Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 140, 337–346 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    H.A. Hansen, V. Viswanathan, J.K. Nørskov, Unifying kinetic and thermodynamic analysis of 2 e – and 4 e – reduction of oxygen on metal surfaces. J. Phys. Chem. C. 118, 6706–6718 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933 (2012)

    CAS  Article  Google Scholar 

  34. 34.

    N.N. Zhuravlev, N.P. Esaulov, I.V. Rall, X-ray investigation of platinum-barium and palladium-barium alloys in the region of Pt5Ba and Pd5Ba compositions. Sov. Phys. Crystallogr. 15, 315–316 (1970)

    Google Scholar 

  35. 35.

    T. Heumann, M. Kniepmeyer, A5B-Phasen vom Typ Cu5Ca und Lavesphasen in den Systemen des Strontiums mit Palladium, Platin, Rhodium und Iridium. Zeitschrift fu̇r Anorg. und Allg. Chemie. 290, 191–204 (1957)

    CAS  Article  Google Scholar 

  36. 36.

    W. Bronger, W. Klemm, Darstellung von Legierungen des Platins mit unedlen Metallen. Zeitschrift fu̇r Anorg. und Allg. Chemie. 319, 58–81 (1962)

    CAS  Article  Google Scholar 

  37. 37.

    M. Notin, J. Mejbar, A. Bouhajib, J. Charles, J. Hertz, The thermodynamic properties of calcium intermetallic compounds. J. Alloys Compd. 220, 62–75 (1995)

    CAS  Article  Google Scholar 

  38. 38.

    F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals. Noth-Holland Physics Publishing (1988)

  39. 39.

    H. Schulz, K. Ritapal, W. Bronger, W. Klemm, U̇ber die Rekation von Elementen der achten Nebengruppe mit Oxiden unedler Metalle im Wasserstoffstrom. Zeitschrift fu̇r Anorg. und Allg. Chemie. 357, 299–313 (1968)

    CAS  Article  Google Scholar 

  40. 40.

    W. M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 94th Edition (Internet Version 2014) (Boca Raton, Press/Taylor and Francis, 2014)

  41. 41.

    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineers (1974)

  42. 42.

    W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–1138 (1965)

    Article  Google Scholar 

  43. 43.

    B. Hammer, L. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 59, 7413–7421 (1999)

    Article  Google Scholar 

  44. 44.

    P. E. Blȯchl, C. J. Fȯrst, J. Schimpl, Projector augmented wave method: ab initio molecular dynamics with full wave functions. Bull. Mater. Sci. 26, 33–41 (2003)

    Article  Google Scholar 

  45. 45.

    S. Bahn, K.W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng., 56–66 (2002)

  46. 46.

    J.J. Mortensen, L. Hansen, K.W. Jacobsen, Real-space grid implementation of the projector augmented wave method. Phys. Rev. B. 71(035), 109 (2005)

    Google Scholar 

  47. 47.

    J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H. Kristoffersen, M. Kuisma, A.H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. Olsen, V. Petzold, N.A. Romero, J. Stausholm-Møller, M. Strange, G.A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Hȧkkinen, G.K.H. Madsen, R.M. Nieminen, J.K. Nørskov, M. Puska, T.T. Rantala, J. Schiøtz, K.S. Thygesen, K.W. Jacobsen, Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter. 22(253), 202 (2010)

    Google Scholar 

  48. 48.

    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976)

    Article  Google Scholar 

  49. 49.

    J.X. Wang, J. Zhang, R.R. Adzic, Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J. Phys. Chem. A. 111(12), 702–10 (2007)

    Google Scholar 

  50. 50.

    J.X. Wang, N.M. Markovic, R.R. Adzic, Kinetic analysis of oxygen reduction on pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J. Phys. Chem. B. 108, 4127–4133 (2004)

    CAS  Article  Google Scholar 

  51. 51.

    T. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams. ASM International (1990)

  52. 52.

    R. Yang, P. Strasser, M.F. Toney, Dealloying of Cu 3 Pt (111) studied by surface X-ray scattering. J. Phys. Chem. C. 115, 9074–9080 (2011)

    CAS  Article  Google Scholar 

  53. 53.

    C.M. Pedersen, M. Escudero-Escribano, A. Velȧzquez-Palenzuela, L.H. Christensen, I. Chorkendorff, I.E. Stephens, Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochim. Acta. 179, 647–657 (2015)

    CAS  Article  Google Scholar 

  54. 54.

    D.F. Van Der Vliet, C. Wang, D. Li, A.P. Paulikas, J. Greeley, R.B. Rankin, D. Strmcnik, D. Tripkovic, N.M. Markovic, V.R. Stamenkovic, Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chemie. Int. Ed. 51, 3139–3142 (2012)

  55. 55.

    U.G. Vej-Hansen, J. Rossmeisl, I.E.L. Stephens, J. Schiøtz, Correlation between diffusion barriers and alloying energy in binary alloys. Phys. Chem. Chem. Phys. 18, 3302–3307 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the EU FP7’s initiative Fuel Cell and Hydrogen Joint Undertaking’s project CathCat (GA 303492), as well as the Danish Strategic Research’s project NACORR (12-133817), for funding this work. This work was supported by a research grant (9455) from the VILLUM FONDEN. M.E.-E. is the recipient of a Sapere Aude: DFF- Research Talent grant from the Danish Council for Independent Research. U.G.V.-H. and J.S. have received funding through grant 1335-00027B from the Danish Council for Independent Research. We thank C. D. Damsgaard for assistance in setting up the XRD measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Schiøtz.

Additional information

U. G. Vej-Hansen and M. Escudero-Escribano contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.13 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vej-Hansen, U.G., Escudero-Escribano, M., Velázquez-Palenzuela, A. et al. New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals. Electrocatalysis 8, 594–604 (2017). https://doi.org/10.1007/s12678-017-0375-9

Download citation

Keywords

  • Oxygen reduction reaction
  • Platinum alloys
  • Alkaline earths