Skip to main content
Log in

Carbon Modified with Vanadium Nanoparticles for Hydrogen Peroxide Electrogeneration

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This paper compares the results of two preparation routes for the production of carbon (Vulcan XC 72R) modified with vanadium nanostructured electrocatalysts for hydrogen peroxide (H2O2) electrogeneration using the following mass proportions of vanadium on carbon (V/C): 1, 3, 5, 7, 10, and 13%. Best results for H2O2 electrogeneration were obtained using a V/C sol-gel method (SGM) with 3%, highest ring currents. For oxygen reduction reaction (ORR), using the V/C SGM with 3% and V/C polymeric precursor method (PPM) with 7%, the results of ring currents measured are very high when compared to Vulcan XC 72R. X-ray diffraction (XRD) analysis mainly showed the V2O5 phase. X-ray photoelectron spectroscopy (XPS) results of the V/C PPM 7% and V/C SGM 3% samples highlight the predominance of the V2O5 phase and, for the latter catalyst, a more oxidized carbon surface. For the most promising electrocatalysts, the contact angle was evaluated, showing that the anchoring of the metal in the carbon surface increases the hydrophilicity of the materials. The prepared materials are promising for peroxide electrogeneration mainly due to the synergetic effect of vanadium oxide nanoparticles and acid oxygen species of the carbon, contributing to enhancing catalyst hydrophilicity.

Electrocatalytic activity toward peroxide electrogeneration using V/C electrodes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.F.P. Nogueira, A.G. Trovó, M.R.A. Silva, R.D. Villa, Fundamentals and applications of environmental processes and photo-Fenton Fenton. Química Nova 30(2), 400–408 (2007)

    Article  CAS  Google Scholar 

  2. M. Skoumal, P.L. Cabot, F. Centellas, C. Arias, R.M. Rodriguez, J.A. Garrido, E. Brillas, Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Appl. Catal. B Environ. 66, 228–240 (2006)

    Article  CAS  Google Scholar 

  3. F.E. Wania, D. Mackay, Global distillation. Unep Nairobi 8, 15–16 (1997)

    Google Scholar 

  4. R.S. Freire, R. Pelegrini, L.T. Kubota, N. Durán, P. Peralta-Zamora, New trends for treatment of industrial effluents containing organochloride species. Química Nova 23(4), 504–511 (2000)

    Article  Google Scholar 

  5. Demajorovic J. Society of risk and environmental responsibility: prospects for corporate education. São Paulo. Senac São Paulo. 2001

  6. F.F. Felix, S. Navickiene, H.S. Dórea, Persistent organic pollutants (POPS) as soil quality indicators. Fapese Magazine 3(2), 39–62 (2007)

    Google Scholar 

  7. M.M. Kondo, W.F. Jardim, Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst. Water Res. 25(7), 823–827 (1991)

    Article  CAS  Google Scholar 

  8. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, R. Sanchirico, Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters. Water Res. 34, 620–628 (2000)

    Article  CAS  Google Scholar 

  9. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013)

    Article  CAS  Google Scholar 

  10. D.M. Bila, M. Dezotti, Drugs in the environment. Química Nova 26(4), 523–530 (2003)

    Article  CAS  Google Scholar 

  11. M.N. Chong, B. Kin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatmente technology: a review. Water Res. 44, 2997–3027 (2010)

    Article  CAS  Google Scholar 

  12. H. Hidaka, S. Yamada, S. Suenaga, H. Kubota, N. Serpone, E. Pelizzetti, M. Grätzel, Photodegradation of surfactants. V. Photocatalytic degradation of surfactants in the presence of semiconductor particles by solar exposure. J. Photochem. Photobiol. A Chem. 47, 103–112 (1989)

    Article  CAS  Google Scholar 

  13. M.-C. Lu, G.-D. Roam, J.-N. Chen, C.P. Huang, Photocatalytic mineralization of toxic chemicals with illuminated TiO2. Chem. Eng. Commun. 139, 1–13 (1995)

    Article  CAS  Google Scholar 

  14. S.L. Woods, J.F. Ferguson, M.M. Benjamin, Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ Sci Technol 23, 62–68 (1989)

    Article  CAS  Google Scholar 

  15. V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, F. Milano, Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion. Appl. Catal. 69, 323–340 (1991)

    Article  CAS  Google Scholar 

  16. G. Mininni, A. Sbrilli, E. Guerriero, M. Rotatori, Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine. Chemosphere 54, 1337–1350 (2004)

    Article  CAS  Google Scholar 

  17. K. Rajeshwar, J. Ibañez, Fundamentals and applications in pollution abatement, environmental electrochemistry (Academic, Cambridge, 1997), pp. 1–737

    Google Scholar 

  18. C.A.R. Ragnini, R.A. Di Iglia, R. Bertazzoli, Considerations about electrogeneration of hydrogen peroxide. Química Nova 24, 252–256 (2001)

    Article  CAS  Google Scholar 

  19. M. Giomo, A. Buso, P. Fier, G. Sandona, B. Boye, G. Farnia, A small-scale pilot plant using an oxygen-reducing gas-diffusion electrode for hydrogen peroxide electrosynthesis. Electrochim. Acta 54, 808–815 (2008)

    Article  CAS  Google Scholar 

  20. P. Drogui, S. Elmaleh, M. Rumeau, C. Bernard, A. Rambaud, Hydrogen peroxide production by water electrolysis: application to disinfection. J Appl Electroch 31, 877–882 (2001)

    Article  CAS  Google Scholar 

  21. J. Gonzales-Garcia, C.E. Banks, R.G. Compton, Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrason. Sonochem. 14, 405–412 (2007)

    Article  Google Scholar 

  22. F. Alcaide, E. Brillas, P.L. Cabot, Impedance study of the evolution of a HO2-—generating hydrophobic gas diffusion electrode. Electrochem. Commun. 4, 838–843 (2002)

    Article  CAS  Google Scholar 

  23. M.H.M.T. Assumpção, R.F.B. De Souza, D.C. Rascio, J.C.M. Silva, M.L. Calegaro, I. Gaubeur, T.R.L.C. Paixão, P. Hammer, M.R.V. Lanza, M.C. Santos, A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon 49, 2842–2851 (2011)

    Article  Google Scholar 

  24. E. Brillas, R.M. Batista, E. Llosa, Electrochemical destruction of aniline and 4- chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode. J. Electrochem. Soc. 142, 1733–1741 (1995)

    Article  CAS  Google Scholar 

  25. S.P. Ringer, K.R. Ratinac, On the role of characterization in the design of interfaces in nanoscale materials technology. Microsc. Microanal. 10, 324–335 (2004)

    Article  CAS  Google Scholar 

  26. L. Seravalli, P. Frigeri, P. Allegri, V. Avanzini, S. Franchi, Metamorphic quantum dot nanostructures for long wavelength operation with enhanced emission efficiency. Mater. Sci. Eng. 27, 1046–1051 (2007)

    Article  CAS  Google Scholar 

  27. J.C.M. Silva, L.S. Parreira, R.F.B. De Souza, M.L. Calegaro, E.V. Spinacé, A.O. Neto, M.C. Santos, PtSn/C alloyed and non-alloyed materials: differences in the ethanol electro-oxidation reaction pathways. Appl. Catal. B Environ. 110, 141–147 (2011)

    Article  CAS  Google Scholar 

  28. R.F.B. De Souza, L.S. Parreira, J.C.M. Silva, F.C. Simões, M.L. Calegaro, M.J. Giz, G.A. Camara, A.O. Neto, M.C. Santos, PtSnCe/C electrocatalysts for ethanol oxidation: DEFC and FTIR “in-situ” studies. I J Hydrog Energy 3611, 519–11527 (2011)

    Google Scholar 

  29. R.F.B. De Souza, A.E.A. Flausino, D.C. Rascio, R.T.S. Oliveira, E.T. Neto, M.L. Calegaro, M.C. Santos, Ethanol oxidation reaction on PtCeO2/C electrocatalysts prepared by the polymeric precursor method. Appl. Catal. B; Environmental 91, 516–523 (2009)

    Article  CAS  Google Scholar 

  30. M.H.M.T. Assumpção, A. Moraes, R.F.B. De Souza, I. Gaubeur, R.T.S. Oliveira, V.S. Antonin, G.R.P. Malpass, R.S. Rocha, M.L. Calegaro, M.R.V. Lanza, M.C. Santos, Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl. Catal. A Gen. 411/412, 1–6 (2012)

    Article  Google Scholar 

  31. Morais EA. Er incorporation into SnO2 obtained by sol-gel: a xerogels analysis and thin films. São Carlos, Universidade de São Paulo, Master thesis, 2002.

  32. C. B. Rodella Preparation and characterization of V2O5 catalysts supported on TiO2. Universidade de São Paulo, São Carlos, Master thesis, 2001.

  33. R.S. Hiratsuka, C.V. Santilli, S.H. Pulcinelli, The sol-gel process: a physical-chemical vision—review. Química Nova 18(2), 171–179 (1995)

    CAS  Google Scholar 

  34. Villanueva AEL, Production of carbon nanostructured phases from the high pressure pyrolysis of carbonaceous precursors dispersed on inert matrices. Porto Alegre, Universidade Federal do Rio Grande do Sul, Phd thesis, 2012.

  35. M. Carmo, Preparation, characterization and evaluation functionalized carbon for applications in PEM fuel cells (IPEN—Autarchy associated with the Universidade de São Paulo, São Paulo, 2008)

    Google Scholar 

  36. M.L. Studebaker, The chemistry of carbon black and reinforcement. Rubber Chemistry and Techology 30, 1400–1483 (1957)

    Article  CAS  Google Scholar 

  37. Lopes CN, Synthesis and characterization of composite polystyrene/graphite produced through polymerization process suspended in situ. Florianópolis, Universidade Federal de Santa Catarina, Phd thesis, 2007.

  38. J.C. Forti, R.S. Rocha, M.R.V. Lanza, R. Bertazzoli, Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone. J. Electroanal. Chem. 601, 63–67 (2007)

    Article  CAS  Google Scholar 

  39. A.A.G.F. Beati, R.S. Rocha, J.G. Oliveira, M.R.V. Lanza, Study of the ranitidine degradation by H2O2 electrogenerated/Fenton in an electrochemical reactor with gas diffusion electrode. Quim Nova 32(1), 125–130 (2009)

    Article  CAS  Google Scholar 

  40. J.C. Forti, C.E. Venancio, M.R.V. Lanza, R. Bertazzoli, Effects of the modification of gas diffusion electrodes by organic redox catalysts for hydrogen peroxide electrosynthesis. J. Braz. Chem. Soc. 19, 643–650 (2008)

    Article  CAS  Google Scholar 

  41. Beati AAGF, Study of ranitidine degradation via H2O2 electrogenerated/Fenton in an electrochemical reactor with gas diffusion electrodes. Campinas, Universidade Estadual de Campinas, Master thesis, 2007.

  42. R.S. Rocha, R.M. Reis, A.A.G.F. Beati, M.R. Lanza, M.D.P.T. Sotomayor, R. Bertazzoli, Development and evaluation of gas diffusion electrodes (GDE) for generation of H2O2 in situ and their application in the degradation of reactive blue 19 dye. Química Nova 35(10), 1961–1966 (2012)

    Article  CAS  Google Scholar 

  43. M.H.M.T. Assumpção, A. Moraes, R.F.B. De Souza, R.M. Reis, R.S. Rocha, I. Gaubeur, M.L. Calegaro, P. Hammer, M.R.V. Lanza, M.C. Santos, Degradation of dipyrone via advanced oxidation processes using a cerium nanostructured electrocatalyst material. Appl. Catal. A Gen. 462/463, 256–261 (2013)

    Article  Google Scholar 

  44. Sousa NS, Study of the oxygen reduction reaction catalyzed by complex tetraazamacrociclos with different metal centers: a theoretical approach. São Luis, Universidade Federal do Maranhão, Master thesis, 2013.

  45. S. Surnev, M.G. Ramsey, F.P. Netzer, Review: Vanadium oxide surface studies. Prog. Surf. Sci. 73, 117–165 (2003)

    Article  CAS  Google Scholar 

  46. A. Moraes, M.H.M.T. Assumpção, R. Papai, I. Gaubeur, R.S. Rocha, R.M. Reis, M.L. Calegaro, M.R.V. Lanza, M.C. Santos, Use of a vanadium nanostructured material for hydrogen peroxide electrogeneration. J. Electroanal. Chem. 719, 127–132 (2014)

    Article  CAS  Google Scholar 

  47. Moreira L, Costa V, Young J, Magazine ores and minerals; vanadium: Brazil Featured assumed position at the producers ranking; year XXXVIII, n°360, p. 53, May 2014

  48. Guerra EM, Preparation and characterization of vanadium pentoxide mesopore and reactions of collation. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Tese de Doutorado, 2007

  49. Junior WA, Nanoparticles synthesis of vanadium oxide obtained by peroxide decomposition. Instituto de Física de São Carlos, Universidade de São Paulo, Tese de Doutorado, 2010

  50. R.F.B. De Souza, L.S. Parreira, D.C. Rascio, J.C.M. Silva, E. Teixeira-Neto, M.L. Calegaro, E.V. Spinace, A.O. Neto, M.C. Santos, Study of ethanol electro-oxidation in acid environment on Pt3Sn/C anode catalysts prepared by a modified polymeric precursor method under controlled synthesis conditions. J. Power Sources 195(6), 1589–1593 (2010)

    Article  CAS  Google Scholar 

  51. M.C. Santos, L. Cogo, S.T. Tanimoto, M.L. Calegaro, L.O.S. Bulhões, A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation. Appl. Surf. Sci. 253(4), 1817–1822 (2006)

    Article  CAS  Google Scholar 

  52. H.B. Suffredini, V. Tricoli, L.A. Avaca, N. Vatistas, Sol-gel method to prepare active Pt-RuO2 coatings on carbon powder for methanol oxidation. Electrochem Communic 6(10), 1025–1028 (2004)

    Article  CAS  Google Scholar 

  53. Karmanov I., Wetting or non-wetting liquid?. Phys. Edu. 2000 p.58, 77

  54. A.P. Luz, S. Ribeiro, V.C. Pandolfelli, Review paper: use of wettability in the investigation of the corrosion behavior of refractory materials. Cerâmica 54, 174–183 (2008)

    Article  CAS  Google Scholar 

  55. D.Y. Kwok, A.W. Neumann, Contact angle measuremente and contact angle interpretation. Adv. Colloid Interf. Sci. 81, 167–249 (1999)

    Article  CAS  Google Scholar 

  56. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001)

    Article  CAS  Google Scholar 

  57. Q. Tang, Y. Chen, Y. Yang, Understanding the nature of vanadium species supported on activated carbon and its catalytic properties in the aerobic oxidation of aromatic alcohols. J ec Catal A: Chem 315, 43–50 (2010)

    Article  CAS  Google Scholar 

  58. B.M. Weckhuysen, D.E. Keller, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 78, 25–46 (2003)

    Article  CAS  Google Scholar 

  59. M.C. Román-Martínez, D. Cazorla-Amorós, A. Linares-Solano, C.S.-M. De Lecea, H. Yamashita, M. Anpo, Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon 33(1), 3–13 (1995)

    Article  Google Scholar 

  60. R.C.M. Jakobs, L.J.J. Janssen, E. Barendrecht, Oxygen reduction at polypyrrole electrodes—I. Theory and evaluation of the RRDE experiments. Electrochim. Acta 30(8), 1085–1091 (1985)

    Article  CAS  Google Scholar 

  61. X. Li, A.L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang, J. Zhang, Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim. Acta 55(20), 5891–5898 (2010)

    Article  CAS  Google Scholar 

  62. L. Demarconnay, C. Coutanceau, J.M. Léger, Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol. Electrochim. Acta 49(25), 4513–4521 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Central de Análises Químicas Instrumentais of Instituto de Química de São Carlos (CAQI/IQSC/USP), IPEN, for the TEM measurements and the Brazilian funding institutions, CNPq (577292/2008-0, 473308/2010-0), CAPES and FAPESP (2005/59992-6, 2008/58789-0, 2009/09145-6, 2010/04539-3, 2010/16511-6, 2007/04759-0, 2011/00002-8, 2011/21656-6, 2015/10314-8), and UFABC, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simas, P.S., Antonin, V.S., Parreira, L.S. et al. Carbon Modified with Vanadium Nanoparticles for Hydrogen Peroxide Electrogeneration. Electrocatalysis 8, 311–320 (2017). https://doi.org/10.1007/s12678-017-0366-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0366-x

Keywords

Navigation