Skip to main content
Log in

Design of Electrochemical Sensor Based on fMWCNT-CPE Decorated with Ti Nanofilm and Its Electrocatalytic Behavior Towards Aminotriazole

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The present study is focused on the fabrication of electrochemical sensor based on electrochemically synthesized titanium nanoparticles (TiNPs) supported on multi-walled carbon nanotubes (MWCNTs) and its application in electrochemical quantification of aminotriazole. The designed electrochemical sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The voltammetric results indicated that the combination of TiNPs and MWCNTs produced remarkable enhancement in electrocatalytic property towards the determination of aminotriazole. Various kinetic parameters like charge transfer resistance (Rct), apparent electron transfer rate constant (kapp), number of electrons transferred (n), electron transfer coefficient (α), formal redox potential (E0), standard heterogeneous rate constant (k0), surface coverage (Γ), diffusion coefficient (D), and catalytic rate constant (k) were evaluated. Based on the designed sensor, aminotriazole exhibited a linear correlation in the concentration range of 0.01–2.0 and 0.01–1.3 μg mL−1 with low detection limits of 0.166 and 0.267 ng mL−1 by AdLSV and DPAdSV, respectively. The fabricated sensor exhibited good accuracy, acceptable stability, and high efficacy for quantitative determination of aminotriazole in some real samples with notable recoveries ranging from 97.8 to 100.10%.

Electrocatalytic oxidation of 3-amino-1,2,4-triazole at the modified surface of newly designed TiNP-fMWCNT-CPE to 3-amino-1,2,4-triazolinone via a two-electron electro-oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. U.J. Pandit, I. Khan, S. Wankar, K.K. Raj, S.N. Limaye, Anal. Methods 7, 10192–10198 (2015). doi:10.1039/c5ay02025e

    Article  CAS  Google Scholar 

  2. B. Habibi, M. Jahanbakhshi, Electrochim. Acta 118, 10–17 (2014). doi:10.1016/j.electacta.2013.11.169

    Article  CAS  Google Scholar 

  3. H. Beitollah, M. Goodarzian, M.A. Khalilzadeh, H. Karimi-Maleh, M. Hassanzadeh, M. Tajbakhsh, J. Mol. Liq. 173, 137–143 (2012). doi:10.1016/j.molliq.2012.06.026

    Article  CAS  Google Scholar 

  4. F.W. Campbell, R.G. Compton, Anal. Bioanal. Chem. 396, 241–259 (2010). doi:10.1007/s00216-009-3063-7

    Article  CAS  Google Scholar 

  5. G.B. Soares, C.M.P. Vaz, C. Ribeiro, I. Hermans, Electrocatalysis 6, 92–101 (2015). doi:10.1007/s12678-014-0223-0

    Article  CAS  Google Scholar 

  6. C. Li, C. Wang, Y. Ma, S. Hu, Microchim. Acta 48, 27–33 (2004). doi:10.1007/s00604-004-0257-8

    Google Scholar 

  7. M.R. Shahmiria, A. Baharia, H. Karimi-Maleh, R. Hosseinzadeh, N. Mirnia, Sensors Actuators B 177, 70–77 (2013). doi:10.1016/j.snb.2012.10.098

    Article  Google Scholar 

  8. B. Zargar, H. Parham, A. Hatamie, Anal. Methods 7, 1026–1035 (2014). doi:10.1039/c4ay02003k

    Article  Google Scholar 

  9. U.J. Pandit, I. Khan, S. Wankar, K.K. Raj, S.N. Limaye, Analytical Chemistry Letters 5, 338–350 (2015). doi:10.1080/22297928.2016.1140073

    Article  CAS  Google Scholar 

  10. A. Farahi, M. Achak, L.E. Gaini, M.A.E. Mhammedi, M. Bakasse, J. Food Drug Anal. 23, 463–471 (2015). doi:10.1016/j.jfda.2015.03.003

    Article  CAS  Google Scholar 

  11. P.K. Brahman, L. Suresh, V. Lokesh, S. Nizamuddin, Anal. Chim. Acta 917, 107–116 (2016). doi:10.1016/j.aca.2016.02.044

    Article  CAS  Google Scholar 

  12. H. Li, M. Li, W. Guo, H. Di, C. Fang, B. Yang, J. Solid State Electrochem. 18, 477–485 (2014). doi:10.1007/s10008-013-2277-y

    Article  CAS  Google Scholar 

  13. J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(7–14) (2005). doi:10.1002/elan.200403113

  14. A. Afkhami, H. Ghaedi, T. Madrakian, D. Nematollahi, B. Mokhtari, Talanta 121, 1–8 (2014). doi:10.1016/j.talanta.2013.12.047

    Article  CAS  Google Scholar 

  15. M. Arvand, B. Palizkar, Mater. Sci. Eng. C. 33, 4876–4883 (2013). doi:10.1016/j.msec.2013.08.002

    Article  CAS  Google Scholar 

  16. T. Mugadza, T. Nyokong, Polyhedron 30, 1820–1829 (2011). doi:10.1016/j.poly.2011.04.020

    Article  CAS  Google Scholar 

  17. P.K. Brahman, R.A. Dar, K.S. Pitre, Sensors Actuators B 176, 307–314 (2013). doi:10.1016/j.snb.2012.09.007

    Article  CAS  Google Scholar 

  18. J.F. Rusling, Acc. Chem. Res. 24, 75–81 (1991)

    Article  CAS  Google Scholar 

  19. J. Wang, B. Zeng, C. Fang, X. Zhou, J. Electroanal, Chem. 484, 88–92 (2000). doi:10.1016/S0022-0728(00)00045-0

    CAS  Google Scholar 

  20. R.A. Dar, P.K. Brahman, S. Tiwari, K.S. Pitre, Colloid Surf B: Biointerfaces. 98, 72–79 (2012). doi:10.1016/j.colsurfb.2012.04.035

    Article  CAS  Google Scholar 

  21. R. Jain, J. Rather, Colloids Surf. B: Biointerfaces 83, 340–346 (2011). doi:10.1016/j.colsurfb.2010.12.003

    Article  CAS  Google Scholar 

  22. P. Anandgaonker, G. Kulkarni, S. Gaikwad, A. Rajbhoj, Arab. J. Chem. (2015). doi:10.1016/j.arabjc.2014.12.015

    Google Scholar 

  23. S.H. Lee, H. Lee, M. Cho, Y. Lee, Chem. Commun. 51, 3391–3394 (2015). doi:10.1039/c4cc09762a

    Article  CAS  Google Scholar 

  24. A. Kumaravel, M. Chandrasekaran, Sensors Actuators B 158, 319–326 (2011). doi:10.1016/j.snb.2011.06.028

    Article  CAS  Google Scholar 

  25. M. Siswana, K.I. Ozoemena, T. Nyokong, Talanta 69, 1136–1142 (2006). doi:10.1016/j.talanta.2005.12.014

    Article  CAS  Google Scholar 

  26. M. Chicharro, E. Bermejo, M. Moreno, A. Sanchez, A. Zapardiel, G. Rivas, Electroanalysis 17, 476–482 (2005). doi:10.1002/elan.200403172

    Article  CAS  Google Scholar 

  27. A.A. Ensafi, M. Amini, B. Rezaei, Colloids Surf. B: Biointerfaces 109, 45–51 (2013). doi:10.1016/j.colsurfb.2013.03.031

    Article  CAS  Google Scholar 

  28. Yeastgenome.org, http://db.yeastgenome.org/5.cgi-bin/locus.pl?locus=his3

  29. Food Safety and Standards Act, 2006, Food Safety and Standards Authority of India, Food Safety and Standards (Contaminants, Toxins and Residues) Regulations (2011)

  30. Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission 28th Session report of revised Maximum Residue Limits of Pesticide Residues (2005)

  31. J. Dugay, M.C. Hennion, Trends Anal. Chem. 14, 407–414 (1995). doi:10.1016/0165-9936(95)90919-E

    CAS  Google Scholar 

  32. J.M. Zen, A.S. Kumar, M.R. Chang, Electrochim. Acta 45, 1691–1699 (2000). doi:10.1016/S0013-4686(99)00327-8

    Article  CAS  Google Scholar 

  33. M. Chicharro, M. Morenoa, E. Bermejo, S. Ongaya, A. Zapardiel, J. Chromatogr. A 1099, 191–197 (2005). doi:10.1016/j.chroma.2005.08.087

    Article  CAS  Google Scholar 

  34. I. Bobeldijk, K. Broess, P. Speksnijder, T.V. Leerdam, J. Chromatogr. A 938, 15–22 (2001). doi:10.1016/S0021-9673(01)01090-1

    Article  CAS  Google Scholar 

  35. F.S. Bayo, R.V. Hyne, K.L. Desseille, Anal. Chim. Acta 675, 125–131 (2010). doi:10.1016/j.aca.2010.07.013

    Article  Google Scholar 

  36. G.J. Depree, P.D. Siegel, J. Chromatogr. B 801, 359–362 (2004). doi:10.1016/j.jchromb.2003.11.031

    Article  CAS  Google Scholar 

  37. Y. Sun, P.F. Liu, D. Wang, J.Q. Li, Y.S. Cao, J. Agric, Food Chem. 57, 4540–4544 (2009). doi:10.1021/jf900601f

    Article  CAS  Google Scholar 

  38. P.K. Brahman, N. Pandey, S.N. Topkaya, R. Singhai, Talanta 134, 554–559 (2015). doi:10.1016/j.talanta.2014.10.054

    Article  CAS  Google Scholar 

  39. C.C. Hu, C.C. Huang, K.H. Chang, Electrochem. Commun. 11, 434–437 (2009). doi:10.1016/j.elecom.2008.12.012

    Article  CAS  Google Scholar 

  40. C.C. Huang, H.C. Hsu, C.C. Hua, K.H. Changa, Y.F. Lee, Electrochim. Acta 55, 7028–7035 (2010). doi:10.1016/j.electacta.2010.07.007

    Article  CAS  Google Scholar 

  41. C.C. Hu, H.C. Hsu, K.H. Chang, J. Electrochem. Soc. 159, D418–D424 (2012). doi:10.1149/2.026207jes

    Article  CAS  Google Scholar 

  42. T. Mugadza, T. Nyokong, Electrochim. Acta 56, 1995–2003 (2011). doi:10.1016/j.electacta.2010.11.016

    Article  CAS  Google Scholar 

  43. M.U.D. Sheikh, G.A. Naikoo, M. Thomas, M. Bano, F. Khan, New J. Chem. 40, 5483–5494 (2016). doi:10.1039/C5NJ03513A

    Article  CAS  Google Scholar 

  44. R.A. Dar, G.A. Naikoo, K.S. Pitre, Electrochim. Acta 111, 526–534 (2013). doi:10.1016/j.electacta.2013.08.128

    Article  CAS  Google Scholar 

  45. B.Y. Chang, S.M. Park, Annu. Rev. Anal. Chem. 3, 209 (2010). doi:10.1146/annurev.anchem.012809.102211

    Article  Google Scholar 

  46. A. Maringa, T. Mugadza, E. Antunes, T. Nyokong, J. Electroanal. Chem. 700, 86–92 (2013). doi:10.1016/j.jelechem.2013.04.022

    Article  CAS  Google Scholar 

  47. J. Laviron, Electroanal. Chem. 101, 19–28 (1979). doi:10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  48. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and application, 2nd ed., Wiley, (2004)

  49. J.C. Abbar, S.T. Nandibewoor, Ind. Eng. Chem. Res. 51, 111–118 (2012). doi:10.1021/ie2021812

    Article  CAS  Google Scholar 

  50. J. Wang, Analytical Electrochemistry, Willey-VCH, 2nd edn, (2001)

  51. M.I. Prodromidis, A.B. Florou, S.M. Tzouwara-Karayanni, M.I. Karayannis, Electroanalysis 12, 1498–1501 (2000)

    Article  CAS  Google Scholar 

  52. Z. Galus, Fundamentals of electrochemical analysis (Ellis Horwood, New York, 1976)

    Google Scholar 

Download references

Acknowledgement

Authors are highly thankful to the Department of Chemistry and Sophisticated Instrumentation Centre (SIC) and to Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, M.P. India, for providing necessary laboratory and instrumentation facilities. Authors also show gratitude to Late Dr. Yadvendra Rohan for his initial support. One of the authors (Imran) acknowledge UGC, New Delhi, for a MAN Fellowship [F1-17.1/2015-16/MANF-2015-17-MAD-54911/(SA-III/Website)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Khan.

Ethics declarations

Funding

There is no funding agency involved in the present research work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The present work does not contain any studies with human or animal subjects, and this article does not contain any studies with animals performed by any of the authors.

Informed Consent

Not applicable.

Electronic supplementary material

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Pandit, U.J., Wankar, S. et al. Design of Electrochemical Sensor Based on fMWCNT-CPE Decorated with Ti Nanofilm and Its Electrocatalytic Behavior Towards Aminotriazole. Electrocatalysis 8, 196–213 (2017). https://doi.org/10.1007/s12678-017-0358-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0358-x

Keywords

Navigation