Concurrent Deposition and Exfoliation of Nickel Hydroxide Nanoflakes Using Liquid Crystal Template and Their Activity for Urea Electrooxidation in Alkaline Medium
- 334 Downloads
- 2 Citations
Abstract
Nickel hydroxide nanoflakes (Ni(OH)2-NF) were prepared by chemical deposition and in situ exfoliation of nickel hydroxide layers confined in the aqueous domain of the liquid crystalline hexagonal template of Brij®78 surfactant. Using excess of sodium borohydride as a reducing agent generates concurrent excessive dynamic hydrogen bubbles which exfoliated and fragmented the nickel hydroxide layers precipitated within the soft hexagonal template. The physicochemical characterizations of Ni(OH)2-NF by using surface area analyser, X-ray diffraction (XRD), XPS and transmission electron microscope (TEM) showed the formation of α-Ni(OH)2 nanoflakes with thickness of 2–3 nm and have about 450 m2 g−1 surface area which is 20 times higher than that for bare nickel (bare-Ni) deposited without surfactant template. The electrocatalytic activity of the Ni(OH)2-NF catalyst for urea electrolysis was studied by cyclic voltammetry and chronoamperometry techniques. The Ni(OH)2-NF has shown a superior activity for the electrochemical oxidation of urea in alkaline solution and exhibits more than tenfold increase in activity in comparison with the bare-Ni deposit. The enhancement of urea electrooxidation activity was related to the superficial enhancement in the electroactive surface area of Ni(OH)2-NF. This new approach of deposition and in situ exfoliation by using liquid crystal template and hydrogen bubbles offers a new platform to nanostructuring wide range of catalysts with better catalytic performance.
Nickel hydroxide nanoflakes (Ni(OH)2-NF) catalyst for the electrochemical oxidation of urea in alkaline solution.
Keywords
Nickel hydroxide Nanoflakes Liquid crystal template Electrooxidation UreaNotes
Acknowledgments
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no RG-1437-015.
References
- 1.J. R. Rostrup-Nielsen, J. Sehested, J. K. Norskov, Hydrogen and Syngas by Steam Reforming, (Academic Press, 2002).Google Scholar
- 2.S. Dunn, Int J Hydrog Energy 27, 235-264 (2002)Google Scholar
- 3.C. Wu, L. Wang, P. T. Willians, J. Shi, J. Huang, Appl. Catal. B Environ. 108, 6-13 (2011).Google Scholar
- 4.B. K. Boggs, R. L. King, G. G. Botte, Chem. Commun., 4859-4861 (2009).Google Scholar
- 5.W. Yan, D. Wang, G. G. Botte, Electrochim. Acta 61, 25-30 (2012).Google Scholar
- 6.H. J. Bradley, Water Research 39, 2245-2252 (2005)Google Scholar
- 7.C. C. Jara, S. Di Giulio, D. Fino, P. Spinelli, J Appl. Electrochem. 38, 915-922 (2008).Google Scholar
- 8.A. N. Rollinson, J. Jones, V. Dupont, M. V. Twigg, Energy Environ. Sci. 4, 1216-1224 (2011).Google Scholar
- 9.R. Y. Ji, D. S. Chan, J. J. Jow, M. S. Wu, Electrochem. Commun. 29, 21-24 (2013).Google Scholar
- 10.A. Doner, E. Telli, G. Kardas, J Power Sources 205, 71-79 (2012).Google Scholar
- 11.T. R. Ling, K. T. Lien, J. J. Jow, T. Y. Lin, Electroanalysis 21, 2213-2219 (2009).Google Scholar
- 12.D. Wang, W. Yan, G. G. Botte, Electrochem. Commun. 13, 1135-1138 (2011).Google Scholar
- 13.A. A. El-Shafei, J. Electroanal. Chem. 471, 89-95 (1999).Google Scholar
- 14.A. T. Miller, B. L. Hassler, G. G. Botte, J. Appl. Electrochem. 42, 925-934 (2012).Google Scholar
- 15.A. Chen, P. H. Hindle, Chem. Rev. 110, 3767-3804 (2010).Google Scholar
- 16.A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy Environ Sci 3, 82 (2010)Google Scholar
- 17.J. Liu, X. W. Liu, Adv. Mater. 24, 4097-4111 (2012).Google Scholar
- 18.S. Guo, S. Dong, Chem. Soc. Rev. 40, 2644-2672 (2011).Google Scholar
- 19.Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, Y. Li, Sci. Report 4, 5787-7 (2014).Google Scholar
- 20.S. Ida, D. Shiga, M. Koinuma, Y. Matsumoto, J. Am. Chem. Soc. 130, 14038-9 (2008)Google Scholar
- 21.C. Nethravathi, N. Ravishankar, C. Shivakumara, M. Rajamathi, J. Power Sources 172, 970-974 (2007).Google Scholar
- 22.F. Song, X. Hu, Nature Commun. 5, 4477-9 (2014).Google Scholar
- 23.H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Nature Commun. 6, 7261-8 (2015).Google Scholar
- 24.P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan, Phys. Chem. Chem. Phys. 4, 3835-3842 (2002).Google Scholar
- 25.P. A. Nelson, J. M. Elliott, G. S. Attard, J. R. Owen, Chem. Mater. 14, 524–529 (2002).Google Scholar
- 26.Y. Yamauchi, T. Yokoshima, H. Mukaibo, M. Tezuka, T. Shigeno, T. Momma, T. Osaka, K. Kuroda, Chem. Lett. 33, 542-543 (2004).Google Scholar
- 27.Y. Yamauchi, T. Momma, T. Yokoshima, K. Kuroda, T. Osaka, J. Mater. Chem. 15, 1987-1994 (2005).Google Scholar
- 28.B. Li, M. Ai, Z. Xu, Chem. Commun. 46, 6267-6269 (2010).Google Scholar
- 29.M. A. Ghanem, A. M. Al-Mayouf, J. P. Singh, T. Abiti, F. Marken, J. Electrochem. Soc. 162, H453-H459 (2015).Google Scholar
- 30.M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. S. C. Smart, Surf. Interface Anal. 41, 324–332 (2009).Google Scholar
- 31.M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys. 14, 2434-2442 (2012).Google Scholar
- 32.J. W. Lee, T. Ahn, D. Soundararajan, J. M. Koc, J. Kim, Chem. Commun. 47, 6305-6307 (2011).Google Scholar
- 33.D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Proc. R. Soc. A 471, 20140792 -65 (2015).Google Scholar
- 34.Z. Q. Liu, K. Xiao, Q. Z. Xu, N. Li, Y. Z. Su, H. J. Wang, S. Chen, RSC Adv. 4, 43724380 (2013).Google Scholar
- 35.Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, S.-Z. Qiao, J. Mater. Chem. A 2, 13845-13853 (2014).Google Scholar
- 36.C. M. Zhao, X. Wang, S. M. Wang, Y. Y. Wang, Y. X. Zhao, W. T. Zheng, Int. J. Hydrog. Energy 37, 11846-11852 (2012).Google Scholar
- 37.Z. Q. Liu, Q. Z. Xu, J. Y. Wang, N. Li, S. H. Guo, Y. Z. Su, H. J. Wang, J. H. Zhang, S. Chen, Int. J. Hydrogen Energy 38, 6657-6662 (2013).Google Scholar
- 38.IUPAC Recommendations, Pure Appl. Chem. 57, 603-619 (1985).Google Scholar
- 39.M. A. Abdel Rahim, R. M. Abdel Hameed, M. W. Khalil, J. Power Sources 134, 160-169 (2004).Google Scholar
- 40.M. Jafarian, M. Babaee, F. Gobal, M. G. Mahjani, J. Electroanal. Chem. 652, 8-12 (2011).Google Scholar
- 41.D. Wang, W. Yan, S. H. Vijapur, G. G. Botte, J. Power Sources 217, 498-502 (2012).Google Scholar
- 42.W. Yan, D. Wang, L. A. Diaz, G. G. Botte, Electrochim. Acta 134, 266-271 (2014).Google Scholar
- 43.W. Yan, D. Wang, G. G. Botte, Appl. Catal. B Environ. 127, 221-226 (2012).Google Scholar
- 44.V. Vedharathinam, G. G. Botte, Electrochim. Acta 108, 660-665 (2013).Google Scholar
- 45.I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M. G. Mahjani, Int. J. Hydrog .Energy. 33, 4367-4376 (2008).Google Scholar
- 46.Q. F. Yi, W. Huang, W. Q. Yu, L. Li, X. P. Liu, Electroanalysis 20, 2016-2022 (2008).Google Scholar
- 47.V. Vedharathinam, G. G. Botte, Electrochim. Acta 81, 292-300 (2012).Google Scholar
- 48.S. Majdi, A. Jabbari, H. Heli, J. Solid State Electrochem. 11, 601-607 (2007).Google Scholar
- 49.H. Heli, M. Jafarian, M. G. Mahjani, F. Gobal, Electrochim. Acta 49, 4999-5006 (2004).Google Scholar
- 50.M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, J Solid State Electrochem. 13, 1171-1179 (2009).Google Scholar
- 51.D. Wang, W. Yan, S. H. Vijapur, G. G. Botte, Electrochim. Acta 89, 732-736 (2013).Google Scholar
- 52.M.-S. Wu, R.-Y. Ji, Y.-R. Zheng, Electrochim. Acta 144, 194-199 (2014).Google Scholar
- 53.M.-S. Wu, G.-W. Lin, R.-S. Yang, J. Power Sources 272, 711-718 (2014).Google Scholar
