Electrocatalysis

, Volume 8, Issue 1, pp 16–26 | Cite as

Concurrent Deposition and Exfoliation of Nickel Hydroxide Nanoflakes Using Liquid Crystal Template and Their Activity for Urea Electrooxidation in Alkaline Medium

  • Mohamed A. Ghanem
  • Abdullah M. Al-Mayouf
  • Jai P. Singh
  • Prabhakarn Arunachalam
Original Research

Abstract

Nickel hydroxide nanoflakes (Ni(OH)2-NF) were prepared by chemical deposition and in situ exfoliation of nickel hydroxide layers confined in the aqueous domain of the liquid crystalline hexagonal template of Brij®78 surfactant. Using excess of sodium borohydride as a reducing agent generates concurrent excessive dynamic hydrogen bubbles which exfoliated and fragmented the nickel hydroxide layers precipitated within the soft hexagonal template. The physicochemical characterizations of Ni(OH)2-NF by using surface area analyser, X-ray diffraction (XRD), XPS and transmission electron microscope (TEM) showed the formation of α-Ni(OH)2 nanoflakes with thickness of 2–3 nm and have about 450 m2 g−1 surface area which is 20 times higher than that for bare nickel (bare-Ni) deposited without surfactant template. The electrocatalytic activity of the Ni(OH)2-NF catalyst for urea electrolysis was studied by cyclic voltammetry and chronoamperometry techniques. The Ni(OH)2-NF has shown a superior activity for the electrochemical oxidation of urea in alkaline solution and exhibits more than tenfold increase in activity in comparison with the bare-Ni deposit. The enhancement of urea electrooxidation activity was related to the superficial enhancement in the electroactive surface area of Ni(OH)2-NF. This new approach of deposition and in situ exfoliation by using liquid crystal template and hydrogen bubbles offers a new platform to nanostructuring wide range of catalysts with better catalytic performance.

Graphical Abstract

Nickel hydroxide nanoflakes (Ni(OH)2-NF) catalyst for the electrochemical oxidation of urea in alkaline solution.

Keywords

Nickel hydroxide Nanoflakes Liquid crystal template Electrooxidation Urea 

Notes

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no RG-1437-015.

References

  1. 1.
    J. R. Rostrup-Nielsen, J. Sehested, J. K. Norskov, Hydrogen and Syngas by Steam Reforming, (Academic Press, 2002).Google Scholar
  2. 2.
    S. Dunn, Int J Hydrog Energy 27, 235-264 (2002)Google Scholar
  3. 3.
    C. Wu, L. Wang, P. T. Willians, J. Shi, J. Huang, Appl. Catal. B Environ. 108, 6-13 (2011).Google Scholar
  4. 4.
    B. K. Boggs, R. L. King, G. G. Botte, Chem. Commun., 4859-4861 (2009).Google Scholar
  5. 5.
    W. Yan, D. Wang, G. G. Botte, Electrochim. Acta 61, 25-30 (2012).Google Scholar
  6. 6.
    H. J. Bradley, Water Research 39, 2245-2252 (2005)Google Scholar
  7. 7.
    C. C. Jara, S. Di Giulio, D. Fino, P. Spinelli, J Appl. Electrochem. 38, 915-922 (2008).Google Scholar
  8. 8.
    A. N. Rollinson, J. Jones, V. Dupont, M. V. Twigg, Energy Environ. Sci. 4, 1216-1224 (2011).Google Scholar
  9. 9.
    R. Y. Ji, D. S. Chan, J. J. Jow, M. S. Wu, Electrochem. Commun. 29, 21-24 (2013).Google Scholar
  10. 10.
    A. Doner, E. Telli, G. Kardas, J Power Sources 205, 71-79 (2012).Google Scholar
  11. 11.
    T. R. Ling, K. T. Lien, J. J. Jow, T. Y. Lin, Electroanalysis 21, 2213-2219 (2009).Google Scholar
  12. 12.
    D. Wang, W. Yan, G. G. Botte, Electrochem. Commun. 13, 1135-1138 (2011).Google Scholar
  13. 13.
    A. A. El-Shafei, J. Electroanal. Chem. 471, 89-95 (1999).Google Scholar
  14. 14.
    A. T. Miller, B. L. Hassler, G. G. Botte, J. Appl. Electrochem. 42, 925-934 (2012).Google Scholar
  15. 15.
    A. Chen, P. H. Hindle, Chem. Rev. 110, 3767-3804 (2010).Google Scholar
  16. 16.
    A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy Environ Sci 3, 82 (2010)Google Scholar
  17. 17.
    J. Liu, X. W. Liu, Adv. Mater. 24, 4097-4111 (2012).Google Scholar
  18. 18.
    S. Guo, S. Dong, Chem. Soc. Rev. 40, 2644-2672 (2011).Google Scholar
  19. 19.
    Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, Y. Li, Sci. Report 4, 5787-7 (2014).Google Scholar
  20. 20.
    S. Ida, D. Shiga, M. Koinuma, Y. Matsumoto, J. Am. Chem. Soc. 130, 14038-9 (2008)Google Scholar
  21. 21.
    C. Nethravathi, N. Ravishankar, C. Shivakumara, M. Rajamathi, J. Power Sources 172, 970-974 (2007).Google Scholar
  22. 22.
    F. Song, X. Hu, Nature Commun. 5, 4477-9 (2014).Google Scholar
  23. 23.
    H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Nature Commun. 6, 7261-8 (2015).Google Scholar
  24. 24.
    P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan, Phys. Chem. Chem. Phys. 4, 3835-3842 (2002).Google Scholar
  25. 25.
    P. A. Nelson, J. M. Elliott, G. S. Attard, J. R. Owen, Chem. Mater. 14, 524–529 (2002).Google Scholar
  26. 26.
    Y. Yamauchi, T. Yokoshima, H. Mukaibo, M. Tezuka, T. Shigeno, T. Momma, T. Osaka, K. Kuroda, Chem. Lett. 33, 542-543 (2004).Google Scholar
  27. 27.
    Y. Yamauchi, T. Momma, T. Yokoshima, K. Kuroda, T. Osaka, J. Mater. Chem. 15, 1987-1994 (2005).Google Scholar
  28. 28.
    B. Li, M. Ai, Z. Xu, Chem. Commun. 46, 6267-6269 (2010).Google Scholar
  29. 29.
    M. A. Ghanem, A. M. Al-Mayouf, J. P. Singh, T. Abiti, F. Marken, J. Electrochem. Soc. 162, H453-H459 (2015).Google Scholar
  30. 30.
    M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. S. C. Smart, Surf. Interface Anal. 41, 324–332 (2009).Google Scholar
  31. 31.
    M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Phys. Chem. Chem. Phys. 14, 2434-2442 (2012).Google Scholar
  32. 32.
    J. W. Lee, T. Ahn, D. Soundararajan, J. M. Koc, J. Kim, Chem. Commun. 47, 6305-6307 (2011).Google Scholar
  33. 33.
    D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Proc. R. Soc. A 471, 20140792 -65 (2015).Google Scholar
  34. 34.
    Z. Q. Liu, K. Xiao, Q. Z. Xu, N. Li, Y. Z. Su, H. J. Wang, S. Chen, RSC Adv. 4, 43724380 (2013).Google Scholar
  35. 35.
    Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, S.-Z. Qiao, J. Mater. Chem. A 2, 13845-13853 (2014).Google Scholar
  36. 36.
    C. M. Zhao, X. Wang, S. M. Wang, Y. Y. Wang, Y. X. Zhao, W. T. Zheng, Int. J. Hydrog. Energy 37, 11846-11852 (2012).Google Scholar
  37. 37.
    Z. Q. Liu, Q. Z. Xu, J. Y. Wang, N. Li, S. H. Guo, Y. Z. Su, H. J. Wang, J. H. Zhang, S. Chen, Int. J. Hydrogen Energy 38, 6657-6662 (2013).Google Scholar
  38. 38.
    IUPAC Recommendations, Pure Appl. Chem. 57, 603-619 (1985).Google Scholar
  39. 39.
    M. A. Abdel Rahim, R. M. Abdel Hameed, M. W. Khalil, J. Power Sources 134, 160-169 (2004).Google Scholar
  40. 40.
    M. Jafarian, M. Babaee, F. Gobal, M. G. Mahjani, J. Electroanal. Chem. 652, 8-12 (2011).Google Scholar
  41. 41.
    D. Wang, W. Yan, S. H. Vijapur, G. G. Botte, J. Power Sources 217, 498-502 (2012).Google Scholar
  42. 42.
    W. Yan, D. Wang, L. A. Diaz, G. G. Botte, Electrochim. Acta 134, 266-271 (2014).Google Scholar
  43. 43.
    W. Yan, D. Wang, G. G. Botte, Appl. Catal. B Environ. 127, 221-226 (2012).Google Scholar
  44. 44.
    V. Vedharathinam, G. G. Botte, Electrochim. Acta 108, 660-665 (2013).Google Scholar
  45. 45.
    I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M. G. Mahjani, Int. J. Hydrog .Energy. 33, 4367-4376 (2008).Google Scholar
  46. 46.
    Q. F. Yi, W. Huang, W. Q. Yu, L. Li, X. P. Liu, Electroanalysis 20, 2016-2022 (2008).Google Scholar
  47. 47.
    V. Vedharathinam, G. G. Botte, Electrochim. Acta 81, 292-300 (2012).Google Scholar
  48. 48.
    S. Majdi, A. Jabbari, H. Heli, J. Solid State Electrochem. 11, 601-607 (2007).Google Scholar
  49. 49.
    H. Heli, M. Jafarian, M. G. Mahjani, F. Gobal, Electrochim. Acta 49, 4999-5006 (2004).Google Scholar
  50. 50.
    M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, J Solid State Electrochem. 13, 1171-1179 (2009).Google Scholar
  51. 51.
    D. Wang, W. Yan, S. H. Vijapur, G. G. Botte, Electrochim. Acta 89, 732-736 (2013).Google Scholar
  52. 52.
    M.-S. Wu, R.-Y. Ji, Y.-R. Zheng, Electrochim. Acta 144, 194-199 (2014).Google Scholar
  53. 53.
    M.-S. Wu, G.-W. Lin, R.-S. Yang, J. Power Sources 272, 711-718 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohamed A. Ghanem
    • 1
    • 2
  • Abdullah M. Al-Mayouf
    • 1
  • Jai P. Singh
    • 1
  • Prabhakarn Arunachalam
    • 1
  1. 1.Electrochemistry Research Group, Chemistry Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt

Personalised recommendations