Electrocatalysis

, Volume 7, Issue 6, pp 451–465 | Cite as

Titania Nanotube Arrays (TNAs) as Support for Oxygen Reduction Reaction (ORR) Platinum Thin Film Catalysts

  • Sebastian Proch
  • Shuhei Yoshino
  • Naohiko Kato
  • Naoko Takahashi
  • Yu Morimoto
Original Research

Abstract

Recently, we showed that Nb-doped bulk TiO2 electrodes can be functionalized with minute amounts of Pt via CO-terminated Pt deposition but optimization of the conductivity of these electrodes via proton intercalation did not change the catalytic activity of the Pt deposits. Here, it is shown that intercalation of H species in 0.27 wt% NH4F in glycol raises the catalytic activity of Pt deposited in a CO-terminated fashion if it is used on nanostructured (titania nanotube arrays) rather than titania bulk electrodes. Catalyst support tuning becomes feasible for nanostructures but effects of the intercalation treatment fade away within days. Moreover, catalytic activities of ultra-low Pt amounts, as determined by ICP-MS, on TNAs are very low compared to deposition on gold. This effect is attributed to high strain exerted on the Pt thin layers by the oxide support.

Graphical Abstract

Size Does Matter: Unlike bulk TiO2 electrodes, titania nanotube arrays (TNAs) are catalyst supports that facilitate tuning of the oxygen reduction response of sub- and monolayer amounts of Pt (from CO-terminated electrodeposition) via proton intercalation.

Keywords

Oxygen reduction reaction (ORR) Titania nanotube arrays (TNAs) Platinum CO-terminated electrodeposition Proton intercalation 

Supplementary material

12678_2016_326_MOESM1_ESM.docx (11.8 mb)
Additional File 1Electronic Supplementary Material. (DOCX 12093 kb)

References

  1. 1.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani, Proc. Natl. Acad. Sci. U. S. A. 111, 45 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12, 919 (2013)CrossRefGoogle Scholar
  4. 4.
    M. K. Debe, Handbook of Fuel Cells-Fundamentals, Technology and Applications, W. Vielstrich, A. Lamm, H. A. Gasteiger (John Wiley & Sons, New York, 2003),Google Scholar
  5. 5.
    M.K. Debe, J. Electrochem. Soc. 160, F522 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Trasatti, Pure Appl. Chem. 58, 955 (1986)Google Scholar
  7. 7.
    M.K. Debe, ECS Trans. 45, 47 (2012)CrossRefGoogle Scholar
  8. 8.
    M.K. Debe, R.T. Atanasoski, A.J. Steinbach, ECS Trans. 41, 937 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Michaelis, Advances in Electrochemical Science and Engineering, R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), 1Google Scholar
  10. 10.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  11. 11.
    M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J.M. Thomas, Catal. Today 122, 51 (2007)CrossRefGoogle Scholar
  12. 12.
    P.V. Kamat, K. Tvrdy, D.R. Baker, J.G. Radich, Chem. Rev. 110, 6664 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. L. Pang, S. Lim, H. C. Ong, W. T. Chong, Appl. Catal., A 481, 127 (2014)Google Scholar
  14. 14.
    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006)CrossRefGoogle Scholar
  15. 15.
    K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114, 9385 (2014)CrossRefGoogle Scholar
  16. 16.
    N.P. Subramanian, S.P. Kumaraguru, H. Colon-Mercado, H. Kim, B.N. Popov, T. Black, D.A. Chen, J. Power Sources 157, 56 (2006)CrossRefGoogle Scholar
  17. 17.
    J.-Y. Huang, K.-Q. Zhang, Y.-K. Lai, Int. J. Photoenergy 2013, 761971 (2013)Google Scholar
  18. 18.
    T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)CrossRefGoogle Scholar
  19. 19.
    C. Gebauer, D. Hoffmann, Z. Jusys, R. J. Behm, ChemElectroChem n/a (2016)Google Scholar
  20. 20.
    K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J. Phys. Chem. B 109, 14433 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochem. Solid-State Lett. 10, F1 (2007)CrossRefGoogle Scholar
  22. 22.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 1564 (2009)CrossRefGoogle Scholar
  23. 23.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 9141 (2009)CrossRefGoogle Scholar
  24. 24.
    B.E. Hayden, Acc. Chem. Res. 46, 1858 (2013)CrossRefGoogle Scholar
  25. 25.
    D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, Anal. Chem. 83, 1916 (2011)CrossRefGoogle Scholar
  26. 26.
    K.J.J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Angew. Chem. Int. Ed. 48, 3529 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Brimaud, R.J. Behm, J. Am. Chem. Soc. 135, 11716 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Science 338, 1327 (2012)CrossRefGoogle Scholar
  29. 29.
    S.H. Ahn, Y. Liu, T.P. Moffat, ACS Catal. 5, 2124 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, Electrocatalysis 1, 2016Google Scholar
  31. 31.
    D.S. Ginley, M.L. Knotek, J. Electrochem. Soc. 126, 2163 (1979)CrossRefGoogle Scholar
  32. 32.
    B.I. Lemon, J.T. Hupp, J. Phys. Chem. 100, 14578 (1996)CrossRefGoogle Scholar
  33. 33.
    F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, J. Bisquert, J. Phys. Chem. B 107, 758 (2003)CrossRefGoogle Scholar
  34. 34.
    H. Tokudome, M. Miyauchi, Angew. Chem. Int. Ed. 44, 1974 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Muñoz, P. Schmuki, Electrochem. Commun. 8, 528 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Ghicov, M. Yamamoto, P. Schmuki, Angew. Chem. Int. Ed. 47, 7934 (2008)CrossRefGoogle Scholar
  37. 37.
    F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 11312 (2008)CrossRefGoogle Scholar
  38. 38.
    B.H. Meekins, P.V. Kamat, ACS Nano 3, 3437 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Idígoras, T. Berger, J.A. Anta, J. Phys. Chem. C 117, 1561 (2013)CrossRefGoogle Scholar
  40. 40.
    Z. Zhang, M.N. Hedhili, H. Zhu, P. Wang, Phys. Chem. Chem. Phys. 15, 15637 (2013)CrossRefGoogle Scholar
  41. 41.
    C. Kim, S. Kim, J. Choi, J. Lee, J.S. Kang, Y.-E. Sung, J. Lee, W. Choi, J. Yoon, Electrochim. Acta 141, 113 (2014)CrossRefGoogle Scholar
  42. 42.
    H. Li, Z. Chen, C.K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, B. Pan, Y.Y. Li, J. Mater. Chem. A 2, 229 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 249 (2016)CrossRefGoogle Scholar
  44. 44.
    U. Diebold, Surf. Sci. Rep. 48, 53 (2003)CrossRefGoogle Scholar
  45. 45.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2 (National Association of Corrosion Engineers), 1974Google Scholar
  46. 46.
    S.M. Bhola, B. Mishra, Int. J. Electrochem. Sci. 8, 7075 (2013)Google Scholar
  47. 47.
    L.A. Lyon, J.T. Hupp, J. Phys. Chem. B 103, 4623 (1999)CrossRefGoogle Scholar
  48. 48.
    M.F. Saenger, T. Höing, B.W. Robertson, R.B. Billa, T. Hofmann, E. Schubert, M. Schubert, Physical Review B 78, 245205 (2008)CrossRefGoogle Scholar
  49. 49.
    J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, J. Phys. Chem. C 118, 8462 (2014)CrossRefGoogle Scholar
  50. 50.
    R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y. Song, J. Kunze, V.-P. Lehto, P. Schmuki, Angew. Chem. Int. Ed. 48, 7236 (2009)CrossRefGoogle Scholar
  51. 51.
    R. Saito, Y. Miseki, K. Sayama, Chem. Commun. 48, 3833 (2012)CrossRefGoogle Scholar
  52. 52.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods—Fundamentals and Applications, 2nd edn. (John Wiley & Sons, Inc., New York, 2001)Google Scholar
  53. 53.
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798 (2013)CrossRefGoogle Scholar
  54. 54.
    J. Cheng, M. Sprik, Phys. Rev. B 82, 081406 (2010)CrossRefGoogle Scholar
  55. 55.
    L. Kavan, M. Grätzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996)CrossRefGoogle Scholar
  56. 56.
    W. M. Haynes, CRC Handbook of Chemistry and Physics, 96 (Taylor & Francis, 2015)Google Scholar
  57. 57.
    P. Schmuki, J. Solid State Electrochem. 6, 145 (2002)CrossRefGoogle Scholar
  58. 58.
    J.W. Schultze, M.M. Lohrengel, Electrochim. Acta 45, 2499 (2000)CrossRefGoogle Scholar
  59. 59.
    X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)CrossRefGoogle Scholar
  60. 60.
    T.L. Thompson, J.T. Yates, Chem. Rev. 106, 4428 (2006)CrossRefGoogle Scholar
  61. 61.
    R. Beranek, Adv. Phys. Chem. 2011, (2011)Google Scholar
  62. 62.
    P. Schmuki, H. Böhni, J.A. Bardwell, J. Electrochem. Soc. 142, 1705 (1995)CrossRefGoogle Scholar
  63. 63.
    M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, (John Wiley & Sons, Inc., Hoboken, NJ, 2008), 211Google Scholar
  64. 64.
    C. Rüdiger, F. Maglia, S. Leonardi, M. Sachsenhauser, I.D. Sharp, O. Paschos, J. Kunze, Electrochim. Acta 71, 1 (2012)CrossRefGoogle Scholar
  65. 65.
    F. Cardon, W.P. Gomes, J. Phys. D. Appl. Phys. 11, L63 (1978)CrossRefGoogle Scholar
  66. 66.
    Z. Chen, H. Dinh, E. Miller, Z. Chen, H. Dinh, E. Miller, Photoelectrochemical Water Splitting—Standards, Experimental Methods, and Protocols (Springer-Verlag, New York, 2013), p. 63Google Scholar
  67. 67.
    C. Zhang, H. Yu, Y. Li, W. Song, B. Yi, Z. Shao, Electrochim. Acta 80, 1 (2012)CrossRefGoogle Scholar
  68. 68.
    S. Mahshid, C. Li, S.S. Mahshid, M. Askari, A. Dolati, L. Yang, S. Luo, Q. Cai, Analyst 136, 2322 (2011)CrossRefGoogle Scholar
  69. 69.
    X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 130, 370 (2008)CrossRefGoogle Scholar
  70. 70.
    K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim. Acta 53, 3181 (2008)CrossRefGoogle Scholar
  71. 71.
    S.A. Al-Thabaiti, R. Hahn, N. Liu, R. Kirchgeorg, S. So, P. Schmuki, S.N. Basahel, S.M. Bawaked, Chem. Commun. 50, 7960 (2014)CrossRefGoogle Scholar
  72. 72.
    A. Yahya, S. Vivek, D. Yuchen, N. Prashant, Nanotechnology 25, 385202 (2014)CrossRefGoogle Scholar
  73. 73.
    X.-Y. Zhang, Y.-X. Hua, C.-Y. Xu, Q.-B. Zhang, X.-B. Cong, N. Xu, Electrochim. Acta 56, 8530 (2011)CrossRefGoogle Scholar
  74. 74.
    Q. Li, Z.-L. Wang, G.-R. Li, R. Guo, L.-X. Ding, Y.-X. Tong, Nano Lett. 12, 3803 (2012)CrossRefGoogle Scholar
  75. 75.
    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Nat. Chem. 2, 454 (2010)CrossRefGoogle Scholar
  76. 76.
    M. Mavrikakis, B. Hammer, J.K. Nørskov, Phys. Rev. Lett. 81, 2819 (1998)CrossRefGoogle Scholar
  77. 77.
    J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem. Int. Ed. 44, 2132 (2005)CrossRefGoogle Scholar
  78. 78.
    J. Yang, X. Chen, X. Yang, J.Y. Ying, Energy Environ. Sci. 5, 8976 (2012)CrossRefGoogle Scholar
  79. 79.
    L. Gan, R. Yu, J. Luo, Z. Cheng, J. Zhu, J. Phys. Chem. Lett. 3, 934 (2012)CrossRefGoogle Scholar
  80. 80.
    S. Suzuki, T. Onodera, J. Kawaji, T. Mizukami, K. Yamaga, Appl. Catal., A 427–428, 92 (2012)Google Scholar
  81. 81.
    W. Vogel, L. Timperman, N. Alonso-Vante, Appl. Catal., A 377, 167 (2010)Google Scholar
  82. 82.
    L. Timperman, A. Lewera, W. Vogel, N. Alonso-Vante, Electrochem. Commun. 12, 1772 (2010)CrossRefGoogle Scholar
  83. 83.
    L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Electrochim. Acta 55, 7558 (2010)CrossRefGoogle Scholar
  84. 84.
    T. Daio, A. Staykov, L. Guo, J. Liu, M. Tanaka, S. Matthew Lyth, K. Sasaki, Sci. Rep. 5, 13126 (2015)CrossRefGoogle Scholar
  85. 85.
    X. Wang, Y. Orikasa, Y. Takesue, H. Inoue, M. Nakamura, T. Minato, N. Hoshi, Y. Uchimoto, J. Am. Chem. Soc. 135, 5938 (2013)CrossRefGoogle Scholar
  86. 86.
    P. Sabatier, Ber. Dtsch. Chem. Ges. 44, 1984 (1911)CrossRefGoogle Scholar
  87. 87.
    I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci. 5, 6744 (2012)CrossRefGoogle Scholar
  88. 88.
    M.S. Chen, D.W. Goodman, Science 306, 252 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sebastian Proch
    • 1
  • Shuhei Yoshino
    • 1
  • Naohiko Kato
    • 1
  • Naoko Takahashi
    • 1
  • Yu Morimoto
    • 1
  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan

Personalised recommendations