Abstract
The efficiency of the water electrolysis process is restricted by the sluggish kinetics of the oxygen evolution reaction (OER). Developing efficient catalysts and their synthesis methods is highly desired to improve the kinetics of the OER and therefore the overall efficiency of the water electrolysis. In this report, we present a facile wet-chemical method for synthesizing IrO2 and RuO2 nanoparticles (NPs) for the OER. The nanoparticles were synthesized by reducing metal chlorides in ethylene glycol in the presence of polyvinylpyrrolidone, followed by annealing in air. The particle size was controlled by adjusting the annealing temperature. The activity of IrO2 and RuO2 NPs supported on carbon black was investigated by cyclic voltammetry (CV) in alkaline (0.1 M KOH) electrolyte. As-synthesized IrO2 and RuO2 NPs showed high OER activity. The IrO2 NPs exhibited a specific activity of up to 3.5 (±1.6) μA/cm2 oxide at 1.53 V (vs. RHE), while the RuO2 NPs achieved a value of 124.2 (±8) μA/cm2 oxide. Moreover, RuO2 NPs showed a mass activity for OER, up to 102.6 (±10.5) A/goxide at 1.53 V (vs. RHE), which represents the highest value reported in the literature to date.

A facile wet-chemical method for synthesizing IrO2 and RuO2 nanoparticles (NPs) is reported here. The nanoparticles were synthesized by reducing metal chlorides in ethylene glycol in the presence of polyvinylpyrrolidone, followed by annealing in air. The size of particles can be controlled by varying the annealing temperature and subsequently their OER activities are varied
This is a preview of subscription content, access via your institution.








References
S.H. Othman, M.S. El-Deab, T. Ohsaka, Superior electrocatalytic activity of Au (110)-like gold nanoparticles towards the oxygen evolution reaction. Int. J. Electrochem. Sci. 6, 6209–6219 (2011)
T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2(8), 1765–1772 (2012)
E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4, 1426–1440 (2014)
N. Mamaca, E. Mayousse, S. Arrii-Clacens, T.W. Napporn, K. Servat, N. Guillet, K.B. Kokoh, Applied Catalysis B: Environmental 111–112, 376–380 (2012)
A. Damjanovic, A. Deya, J.O.’.M. Bockris, Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt‐Rh alloy electrodes. J. Electrochem. Soc 113(7), 739–746 (1966)
E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800 (2014)
X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu, P. Du, Nanostructured copper oxide electrodeposited from copper (II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochemistry Communications 46, 1–4 (2014)
J. Horkans, M.W. Shafer, An investigation of the electrochemistry of a series of metal dioxides with rutile-type structure: MoO2, WO2, ReO2, RuO2, OsO2, and IrO2. J. Electrochem. Soc 124(8), 1202–1207 (1977)
R. Frydendal, E.A. Paoli, B.P. P. Knudsen, B. Wickman, P. Malacrida, I.E.L. Stephens, I. Chorkendorff, Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. Chem. Electro. Chem 1, 2075–2081 (2014)
J.O.’.M. Bockris, T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc 131(2), 290–302 (1984)
S. Song, H. Zhang, X. Ma, Z. Shao, R.T. Baker, B. Yi, Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int. J. of Hydrogen energy 33, 4955–4961 (2008)
C. Felix, T. Maiyalagan, S. Pasupathi, B. Bladergroen, V. Linkov, Synthesis and optimisation of IrO2 electrocatalysts by Adams fusion method for solid polymer electrolyte electrolysers. Micro and nanosystems 4, 186–191 (2012)
Y. Murakami, H. Ohkawauchi, M. Ito, K. Yahikozawa, Y. Takasu, Preparations of ultrafine IrO2-SnO2 binary oxide particles by a sol-gel process. Electrochim. Acta 39, 2551–2554 (1994)
Y. Murakami, S. Tsuchiya, K. Yahikozawa, Y. Takasu, Preparation of ultrafine IrO2-Ta2O5 binary oxide particles by a sol-gel process. Electrochim. Acta 39, 651–654 (1994)
M. Ito, Y. Murakami, H. Kaji, H. Ohawauchi, K. Yahikozawa, Y. Takasu, Preparation of ultrafine RuO2-SnO2 binary oxide particles by a sol-gel process. J. Electrochem. Soc. 141, 1242–1245 (1994)
K. Kameyama, S. Shohji, S. Onoue, K. Nishimura, K. Yahikozawa, Y. Takasu, Preparation of ultrafine RuO2-TiO2 binary oxide particles by a sol-gel process. J. Electrochem. Soc. 140, 1036–1037 (1993)
K. Biswas, C.N.R. Rao, Synthesis and characterization of nanocrystals of the oxide metals, RuO2, IrO2, and ReO3. J. Nanosci. Nanotechnol. 7, 1969–1974 (2007)
P.G. Hoertz, Y.I. Kim, W.J. Youngblood, T.E. Mallouk, Bidentate dicarboxylate capping groups and photosensitizers control the Size of IrO2 nanoparticle catalysts for water oxidation. J. Phys. Chem. B 111, 6845–6856 (2007)
Y.X. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J. Phys. Chem. Lett. 2, 402–406 (2011)
M. Yagi, E. Tomita, T. Kuwabara, Remarkably high activity of electrodeposited iro2 film for electro-catalytic water oxidation. J. Electroanal. Chem. 579, 83–88 (2005)
C.S. Hsieh, D.S. Tsai, R.S. Chen, Y.S. Huang, Preparation of ruthenium dioxide nanorods and their field emission characteristics. Appl. Phys. Lett. 85, 3860–3862 (2004)
R.R. Bi, X.L. Wu, F.F. Cao, L.Y. Jiang, Y.G. Guo, L.J. Wan, Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 114, 2448–2451 (2010)
M. Min, K. Machida, J.H. Jang, K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334–A338 (2006)
K.A. Stoerzinger, L. Qiao, M.D. Biegalski, Y. Shao-Horn, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014)
A.D. Blasi, C. D’Urso, V. Baglio, V. Antonucci, A.S. Arico’, R. Ornelas, F. Matteucci, G. Orozco, D. Beltran, Y. Meas, L.G. Arriaga, Preparation and evaluation of RuO2–IrO2, IrO2–Pt and IrO2–Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer. J Appl.Electrochem. 39, 191–196 (2009)
J.C. Cruz, V. Baglio, S. Siracusano, R. Ornelas, L. Ortiz-Frade, L.G. Arriaga, V. Antonucci, A.S. Arico, Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer. J. Nanopart. Res. 13, 1639–1646 (2011)
Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012)
Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)
H. Song, F. Kim, S. Connor, G.A. Somorjai, P. Yang, Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 109, 188–193 (2005)
H. Hei, H. He, R. Wang, X. Liu, G. Zhang, Controlled synthesis and characterization of noble metal nanoparticles. Soft Nanoscience Letters 2, 34–40 (2012)
F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.-Y. Silvert, K. Tekaia-Elhsissen, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. NanoStructured Materials 11(8), 1277–1284 (1999)
E. Rasten, G. Hagen, R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta. 48, 3945–3952 (2003)
J. Rossmeisl, Z.W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007)
E. Tsuji, A. Imanishi, K. Fukui, Y. Nakato, Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56, 2009–2016 (2011)
Acknowledgment
This work was supported by the Singapore Ministry of Education Tier 1 Grant (RG131/14) and Tier 2 Grant (MOE2015-T2-1-020) and the Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) program. The authors thank Prof. Timothy John White for valuable discussion and Dr. Yubo Chen for technical supports on XRD data analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, T.D., Scherer, G.G. & Xu, Z.J. A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction. Electrocatalysis 7, 420–427 (2016). https://doi.org/10.1007/s12678-016-0321-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12678-016-0321-2
Keywords
- Oxygen evolution
- IrO2
- RuO2
- Synthesis
- Nanoparticles