Skip to main content

A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction

Abstract

The efficiency of the water electrolysis process is restricted by the sluggish kinetics of the oxygen evolution reaction (OER). Developing efficient catalysts and their synthesis methods is highly desired to improve the kinetics of the OER and therefore the overall efficiency of the water electrolysis. In this report, we present a facile wet-chemical method for synthesizing IrO2 and RuO2 nanoparticles (NPs) for the OER. The nanoparticles were synthesized by reducing metal chlorides in ethylene glycol in the presence of polyvinylpyrrolidone, followed by annealing in air. The particle size was controlled by adjusting the annealing temperature. The activity of IrO2 and RuO2 NPs supported on carbon black was investigated by cyclic voltammetry (CV) in alkaline (0.1 M KOH) electrolyte. As-synthesized IrO2 and RuO2 NPs showed high OER activity. The IrO2 NPs exhibited a specific activity of up to 3.5 (±1.6) μA/cm2 oxide at 1.53 V (vs. RHE), while the RuO2 NPs achieved a value of 124.2 (±8) μA/cm2 oxide. Moreover, RuO2 NPs showed a mass activity for OER, up to 102.6 (±10.5) A/goxide at 1.53 V (vs. RHE), which represents the highest value reported in the literature to date.

A facile wet-chemical method for synthesizing IrO2 and RuO2 nanoparticles (NPs) is reported here. The nanoparticles were synthesized by reducing metal chlorides in ethylene glycol in the presence of polyvinylpyrrolidone, followed by annealing in air. The size of particles can be controlled by varying the annealing temperature and subsequently their OER activities are varied

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. S.H. Othman, M.S. El-Deab, T. Ohsaka, Superior electrocatalytic activity of Au (110)-like gold nanoparticles towards the oxygen evolution reaction. Int. J. Electrochem. Sci. 6, 6209–6219 (2011)

    CAS  Google Scholar 

  2. T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2(8), 1765–1772 (2012)

    Article  CAS  Google Scholar 

  3. E. Antolini, Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4, 1426–1440 (2014)

    Article  CAS  Google Scholar 

  4. N. Mamaca, E. Mayousse, S. Arrii-Clacens, T.W. Napporn, K. Servat, N. Guillet, K.B. Kokoh, Applied Catalysis B: Environmental 111–112, 376–380 (2012)

    Article  Google Scholar 

  5. A. Damjanovic, A. Deya, J.O.’.M. Bockris, Electrode kinetics of oxygen evolution and dissolution on Rh, Ir, and Pt‐Rh alloy electrodes. J. Electrochem. Soc 113(7), 739–746 (1966)

    Article  CAS  Google Scholar 

  6. E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800 (2014)

    Article  CAS  Google Scholar 

  7. X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu, P. Du, Nanostructured copper oxide electrodeposited from copper (II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochemistry Communications 46, 1–4 (2014)

    Article  Google Scholar 

  8. J. Horkans, M.W. Shafer, An investigation of the electrochemistry of a series of metal dioxides with rutile-type structure: MoO2, WO2, ReO2, RuO2, OsO2, and IrO2. J. Electrochem. Soc 124(8), 1202–1207 (1977)

    Article  CAS  Google Scholar 

  9. R. Frydendal, E.A. Paoli, B.P. P. Knudsen, B. Wickman, P. Malacrida, I.E.L. Stephens, I. Chorkendorff, Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. Chem. Electro. Chem 1, 2075–2081 (2014)

    CAS  Google Scholar 

  10. J.O.’.M. Bockris, T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc 131(2), 290–302 (1984)

    Article  CAS  Google Scholar 

  11. S. Song, H. Zhang, X. Ma, Z. Shao, R.T. Baker, B. Yi, Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int. J. of Hydrogen energy 33, 4955–4961 (2008)

    Article  CAS  Google Scholar 

  12. C. Felix, T. Maiyalagan, S. Pasupathi, B. Bladergroen, V. Linkov, Synthesis and optimisation of IrO2 electrocatalysts by Adams fusion method for solid polymer electrolyte electrolysers. Micro and nanosystems 4, 186–191 (2012)

    Article  CAS  Google Scholar 

  13. Y. Murakami, H. Ohkawauchi, M. Ito, K. Yahikozawa, Y. Takasu, Preparations of ultrafine IrO2-SnO2 binary oxide particles by a sol-gel process. Electrochim. Acta 39, 2551–2554 (1994)

    Article  CAS  Google Scholar 

  14. Y. Murakami, S. Tsuchiya, K. Yahikozawa, Y. Takasu, Preparation of ultrafine IrO2-Ta2O5 binary oxide particles by a sol-gel process. Electrochim. Acta 39, 651–654 (1994)

    Article  CAS  Google Scholar 

  15. M. Ito, Y. Murakami, H. Kaji, H. Ohawauchi, K. Yahikozawa, Y. Takasu, Preparation of ultrafine RuO2-SnO2 binary oxide particles by a sol-gel process. J. Electrochem. Soc. 141, 1242–1245 (1994)

    Article  Google Scholar 

  16. K. Kameyama, S. Shohji, S. Onoue, K. Nishimura, K. Yahikozawa, Y. Takasu, Preparation of ultrafine RuO2-TiO2 binary oxide particles by a sol-gel process. J. Electrochem. Soc. 140, 1036–1037 (1993)

    Google Scholar 

  17. K. Biswas, C.N.R. Rao, Synthesis and characterization of nanocrystals of the oxide metals, RuO2, IrO2, and ReO3. J. Nanosci. Nanotechnol. 7, 1969–1974 (2007)

    Article  CAS  Google Scholar 

  18. P.G. Hoertz, Y.I. Kim, W.J. Youngblood, T.E. Mallouk, Bidentate dicarboxylate capping groups and photosensitizers control the Size of IrO2 nanoparticle catalysts for water oxidation. J. Phys. Chem. B 111, 6845–6856 (2007)

    Article  CAS  Google Scholar 

  19. Y.X. Zhao, E.A. Hernandez-Pagan, N.M. Vargas-Barbosa, J.L. Dysart, T.E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J. Phys. Chem. Lett. 2, 402–406 (2011)

    Article  CAS  Google Scholar 

  20. M. Yagi, E. Tomita, T. Kuwabara, Remarkably high activity of electrodeposited iro2 film for electro-catalytic water oxidation. J. Electroanal. Chem. 579, 83–88 (2005)

    Article  CAS  Google Scholar 

  21. C.S. Hsieh, D.S. Tsai, R.S. Chen, Y.S. Huang, Preparation of ruthenium dioxide nanorods and their field emission characteristics. Appl. Phys. Lett. 85, 3860–3862 (2004)

    Article  CAS  Google Scholar 

  22. R.R. Bi, X.L. Wu, F.F. Cao, L.Y. Jiang, Y.G. Guo, L.J. Wan, Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 114, 2448–2451 (2010)

    Article  CAS  Google Scholar 

  23. M. Min, K. Machida, J.H. Jang, K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334–A338 (2006)

    Article  CAS  Google Scholar 

  24. K.A. Stoerzinger, L. Qiao, M.D. Biegalski, Y. Shao-Horn, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014)

    Article  CAS  Google Scholar 

  25. A.D. Blasi, C. D’Urso, V. Baglio, V. Antonucci, A.S. Arico’, R. Ornelas, F. Matteucci, G. Orozco, D. Beltran, Y. Meas, L.G. Arriaga, Preparation and evaluation of RuO2–IrO2, IrO2–Pt and IrO2–Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer. J Appl.Electrochem. 39, 191–196 (2009)

    Article  Google Scholar 

  26. J.C. Cruz, V. Baglio, S. Siracusano, R. Ornelas, L. Ortiz-Frade, L.G. Arriaga, V. Antonucci, A.S. Arico, Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer. J. Nanopart. Res. 13, 1639–1646 (2011)

    Article  CAS  Google Scholar 

  27. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012)

    Article  CAS  Google Scholar 

  28. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  CAS  Google Scholar 

  29. H. Song, F. Kim, S. Connor, G.A. Somorjai, P. Yang, Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 109, 188–193 (2005)

    Article  CAS  Google Scholar 

  30. H. Hei, H. He, R. Wang, X. Liu, G. Zhang, Controlled synthesis and characterization of noble metal nanoparticles. Soft Nanoscience Letters 2, 34–40 (2012)

    Article  CAS  Google Scholar 

  31. F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P.-Y. Silvert, K. Tekaia-Elhsissen, Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. NanoStructured Materials 11(8), 1277–1284 (1999)

    Article  CAS  Google Scholar 

  32. E. Rasten, G. Hagen, R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta. 48, 3945–3952 (2003)

    Article  CAS  Google Scholar 

  33. J. Rossmeisl, Z.W. Qu, H. Zhu, G.-J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007)

    Article  CAS  Google Scholar 

  34. E. Tsuji, A. Imanishi, K. Fukui, Y. Nakato, Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56, 2009–2016 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Singapore Ministry of Education Tier 1 Grant (RG131/14) and Tier 2 Grant (MOE2015-T2-1-020) and the Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) program. The authors thank Prof. Timothy John White for valuable discussion and Dr. Yubo Chen for technical supports on XRD data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichuan J. Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Scherer, G.G. & Xu, Z.J. A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction. Electrocatalysis 7, 420–427 (2016). https://doi.org/10.1007/s12678-016-0321-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0321-2

Keywords

  • Oxygen evolution
  • IrO2
  • RuO2
  • Synthesis
  • Nanoparticles