Electrocatalysis

, Volume 7, Issue 5, pp 391–399 | Cite as

Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface

  • Youn-Geun Kim
  • Alnald Javier
  • Jack H. Baricuatro
  • Manuel P. Soriaga
Original Research

Abstract

Cu catalyzes the electrochemical reduction of CO2 or CO to an assortment of products, a behavior that is a detriment when only one reduced compound is desired. The present article provides an example in which, through the atomic-level control of the structure of the Cu electrode surface, the yield distribution is regulated to generate only one product. The reaction investigated was the preferential reduction of CO to C2H5OH on Cu at a low overpotential in alkaline solution. Experimental measurements combined electrochemical scanning tunneling microscopy (ECSTM) and differential electrochemical mass spectrometry (DEMS). An atomically ordered Cu(100) surface, prepared from either a single crystal or by Cu(pc)-to-Cu(100) reconstruction, did not produce ethanol. When the surfaces were subjected to monolayer-limited Cu↔Cu2O cycles, only the reconstructed surface underwent an additional structural transformation that spawned the selective production of ethanol at a potential 645 mV lower than that which generates multiple products. Quasi-operando ECSTM indicated transformation to an ordered stepped surface, Cu(S) − [3(100) × (111)], or Cu(511). The non-selective, multiple-product Cu-catalyzed reduction of CO had thus been regulated to yield only one liquid fuel by an atomic-level structural modification of the electrode surface.

Graphical Abstract

TOC GRAPHIC

Keywords

Selective reduction of CO to ethanol on Cu(511) in alkaline solution at low overpotential Operando generation of Cu(511) electrode surface from polycrystalline Cu Operando electrochemical scanning tunneling microscopy (OECSTM) Differential electrochemical mass spectrometry (DEMS) Seriatim OECSTM-DEMS 

References

  1. 1.
    Y. Hori, Electrochemical CO2 reduction on metal electrodes, in Modern Aspects of Electrochemistry, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer, New York, 2008), p. 89CrossRefGoogle Scholar
  2. 2.
    M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594, 1 (2006)CrossRefGoogle Scholar
  3. 3.
    D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1, 3451 (2010)CrossRefGoogle Scholar
  4. 4.
    K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci 2, 1902 (2011)CrossRefGoogle Scholar
  5. 5.
    K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5, 7050 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Javier, J.H. Baricuatro, Y.-G. Kim, M.P. Soriaga, Overlayer Au-on-W near-surface alloy for the selective electrochemical reduction of CO2 to methanol: empirical (DEMS) corroboration of a computational (DFT) prediction. Electrocatalysis 6, 493 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Back, H. Kim, Y. Jung, Selective heterogeneous CO2 electroreduction to methanol. ACS Catal 5, 965 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Karamad, V. Tripkovic, J. Rossmeisl, Intermetallic alloys as CO electroreduction catalysts—role of isolated active sites. ACS Catal 4, 2268 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Chan, C. Tsai, H.A. Hansen, J.K. Nørskov, Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899 (2014)CrossRefGoogle Scholar
  10. 10.
    J.H. Montoya, C. Shi, K. Chan, J.K. Nørskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett 6, 2032 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Cheng, H. Xiao, W.A. Goddard, Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0.J. Phys Chem Lett 6, 4767 (2015)CrossRefGoogle Scholar
  12. 12.
    K.J.P. Schouten, Z. Qin, E.P. Gallent, M.T.M. Koper, Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc 134, 9864 (2012)CrossRefGoogle Scholar
  13. 13.
    F. Calle-Vallejo, M.T.M. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed 52, 7282 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.-G. Kim, J.H. Baricuatro, A. Javier, J.M. Gregoire, M.P. Soriaga, The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: A study by operando EC-STM. Langmuir 30, 15053 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Andrews, M. Ren, F. Wang, Z. Zhang, P. Sprunger, R. Kurtz, J. Flake, Electrochemical reduction of CO2 at Cu nanocluster/(100) ZnO electrodes. J Electrochem Soc 160, H841 (2013)CrossRefGoogle Scholar
  16. 16.
    D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun 5, 4948 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Zhu, M. Shao, Surface structure and composition effects on electrochemical reduction of carbon dioxide. J Solid State Electrochem 20, 861 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Tang, A.A. Peterson, A.S. Varela, Z.P. Jovanov, L. Bech, W.J. Durand, S. Dahl, J.K. Nørskov, I. Chorkendorff, The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14, 76 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106, 15 (2002)CrossRefGoogle Scholar
  20. 20.
    Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, Electrochemical reduction of CO at a copper electrode. J Phys Chem B 101, 7075 (1997)CrossRefGoogle Scholar
  21. 21.
    Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J Am Chem Soc 109, 5022 (1987)CrossRefGoogle Scholar
  22. 22.
    A. Verdaguer-Casadevall, C.W. Li, T.P. Johansson, S.B. Scott, J.T. McKeown, M. Kumar, I.E.L. Stephens, M.W. Kanan, I. Chorkendorff, Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc 137, 9808 (2015)CrossRefGoogle Scholar
  23. 23.
    Y.-G. Kim, M.P. Soriaga, Cathodic regeneration of a clean and ordered Cu(100)-(1 × 1) surface from an air-oxidized and disordered electrode: an operando STM study. J Electroanal Chem 734, 7 (2014)Google Scholar
  24. 24.
    Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J Mol Catal A Chem 199, 39 (2003)Google Scholar
  25. 25.
    C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504 (2014)Google Scholar
  26. 26.
    R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136, 6978 (2014)Google Scholar
  27. 27.
    R.A. van Santen, Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42, 57 (2009)Google Scholar
  28. 28.
    A. Javier, B. Chmielowiec, J. Sanabria-Chinchilla, Y.-G. Kim, J.H. Baricuatro, M.P. Soriaga, A DEMS study of the reduction of CO2, CO, and HCHO pre-adsorbed on Cu electrodes: empirical inferences on the CO2RR mechanism. Electrocatalysis 6, 127 (2015)Google Scholar
  29. 29.
    K. Itaya, In situ scanning tunneling microscopy in electrolyte solutions. Prog Surf Sci 58, 121 (1998)Google Scholar
  30. 30.
    I. Horcas, R. Fernández, J.M. Gomez-Rodriguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78, 013705 (2007)Google Scholar
  31. 31.
    T.V. Vorburger, Methods for Characterizing Surface Topography, in: Tutorials in Optics, ed. by D.T. Moore (Optical Society of America, Washington, DC, 1992), p. 137Google Scholar
  32. 32.
    H. Baltruschat, Differential Electrochemical Mass Spectrometry as a Tool for Interfacial Studies, in: Interfacial Electrochemistry, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), p. 577Google Scholar
  33. 33.
    H. Baltruschat, Differential electrochemical mass spectrometry. J Am Soc Mass Spectrom 15, 1693 (2004)Google Scholar
  34. 34.
    R.W.G. Wyckoff, Crystal Structures, vol. 1, 2nd edn. (Wiley, New York, 1963)Google Scholar
  35. 35.
    D.H. Buckley, Surface Effects in Adhesion, Friction, Wear, and Lubrication (Elsevier, New York, 1981), p. 270Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Youn-Geun Kim
    • 1
  • Alnald Javier
    • 1
  • Jack H. Baricuatro
    • 1
  • Manuel P. Soriaga
    • 1
    • 2
  1. 1.Division of Chemistry and Chemical EngineeringJoint Center for Artificial Photosynthesis, California Institute of TechnologyPasadenaUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations