Skip to main content

Advertisement

Log in

Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Molecular cobalt and nickel complexes are among the most promising homogeneous systems for electrocatalytic hydrogen evolution. However, there has been little exploration into the effect of gaseous co-additives such as CO and H2, which may be present in operating hydrogen-evolving or carbon-dioxide reduction systems, on the performance of these molecular electrocatalysts. In this report, we investigate the electrocatalytic activity of six cobalt and nickel complexes supported by tetraazamacrocyclic or diazadiphosphacyclooctane ligands for the reduction of p-toluenesulfonic acid to hydrogen in acetonitrile under inert atmosphere and in the presence of CO and H2. We present an elevated-pressure electrochemical apparatus capable of reaching CO and H2 pressures of ca. 15–520 pounds per square inch (psia) (∼1–35 atm), and we use this apparatus to determine binding constants for CO addition for each catalyst and study the inhibition of the electrocatalysis as a function of CO and H2 pressure. In the case of CO, the extent of catalytic inhibition is correlated to the binding constant, with the cobalt complexes showing a greater degree of catalyst inhibition compared to the nickel complexes. In the case of H2, no complex showed appreciable electrocatalytic inhibition even at H2 pressures of ca. 500 psia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Grätzel, Acc. Chem. Res. 14, 376–384 (1981)

    Article  Google Scholar 

  2. U. Koelle, New J. Chem. 16, 157–169 (1992)

    CAS  Google Scholar 

  3. A.J. Bard, M.A. Fox, Acc. Chem. Res. 28, 141–145 (1995)

    Article  CAS  Google Scholar 

  4. J.A. Turner, Science 305, 972–974 (2004)

    Article  CAS  Google Scholar 

  5. V. Artero, M. Fontecave, Coord. Chem. Rev. 249, 1518–1535 (2005)

    Article  CAS  Google Scholar 

  6. N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. 103, 15729–15735 (2006)

    Article  CAS  Google Scholar 

  7. N.S. Lewis, Science 315, 798–801 (2007)

    Article  CAS  Google Scholar 

  8. G.W. Crabtree, M.S. Dresselhaus, MRS Bull. 33, 421–428 (2008)

    Article  CAS  Google Scholar 

  9. H.B. Gray, Nat. Chem. 1, 7 (2009)

    Article  CAS  Google Scholar 

  10. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110, 6474–6502 (2010)

    Article  CAS  Google Scholar 

  11. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  Google Scholar 

  12. T.-H. Chao, J.H. Espenson, J. Am, Chem. Soc. 100, 129–133 (1978)

    Article  CAS  Google Scholar 

  13. P. Connolly, J.H. Espenson, Inorg. Chem. 25, 2684–2688 (1986)

    Article  CAS  Google Scholar 

  14. X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters, Chem. Commun., 4723-4725 (2005)

  15. M. Razavet, V. Artero, M. Fontecave, Inorg. Chem. 44, 4786–4795 (2005)

    Article  CAS  Google Scholar 

  16. X. Hu, B.S. Brunschwig, J.C. Peters, J. Am, Chem. Soc. 129, 8988–8998 (2007)

    Article  CAS  Google Scholar 

  17. C. Baffert, V. Artero, M. Fontecave, Inorg. Chem. 46, 1817–1824 (2007)

    Article  CAS  Google Scholar 

  18. P.-A. Jacques, V. Artero, J. Pecaut, M. Fontecave, Proc. Natl. Acad. Sci. 106, 20627–20632 (2009)

    Article  Google Scholar 

  19. J.L. Dempsey, B.S. Brunschwig, J.R. Winkler, H.B. Gray, Acc. Chem. Res. 42, 1995–2004 (2009)

    Article  CAS  Google Scholar 

  20. V. Fourmond, P.-A. Jacques, M. Fontecave, V. Artero, Inorg. Chem. 49, 10338–10347 (2010)

    Article  CAS  Google Scholar 

  21. S. Losse, J.G. Vos, S. Rau, Coord. Chem. Rev. 254, 2492–2504 (2010)

    Article  CAS  Google Scholar 

  22. N. Kaeffer, M. Chavarot-Kerlidou, V. Artero, Acc. Chem. Res. (2015)

  23. C.C.L. McCrory, C. Uyeda, J.C. Peters, J. Am, Chem. Soc. 134, 3164–3170 (2012)

    Article  CAS  Google Scholar 

  24. L.L. Efros, H.H. Thorp, G.W. Brudvig, R.H. Crabtree, Inorg. Chem. 31, 1722–1724 (1992)

    Article  CAS  Google Scholar 

  25. C.J. Curtis, A. Miedaner, R. Ciancanelli, W.W. Ellis, B.C. Noll, M. Rakowski DuBois, D.L. DuBois, Inorg. Chem. 42, 216–227 (2002)

    Article  CAS  Google Scholar 

  26. A.D. Wilson, R.H. Newell, M.J. McNevin, J.T. Muckerman, M. Rakowski DuBois, D.L. DuBois, J. Am. Chem. Soc. 128, 358–366 (2005)

    Article  CAS  Google Scholar 

  27. A.D. Wilson, R.K. Shoemaker, A. Miedaner, J.T. Muckerman, D.L. DuBois, M.R. DuBois, Proc. Natl. Acad. Sci. 104, 6951–6956 (2007)

    Article  CAS  Google Scholar 

  28. M.R. DuBois, D.L. DuBois, Comptes Rendus Chimie 11, 805–817 (2008)

    Article  CAS  Google Scholar 

  29. M.R. Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974–1982 (2009)

    Article  CAS  Google Scholar 

  30. M.R. DuBois, D.L. DuBois, Chem. Soc. Rev. 38, 62–72 (2009)

    Article  Google Scholar 

  31. A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, Science 326, 1384–1387 (2009)

    Article  CAS  Google Scholar 

  32. U.J. Kilgore, J.A.S. Roberts, D.H. Pool, A.M. Appel, M.P. Stewart, M.R. DuBois, W.G. Dougherty, W.S. Kassel, R.M. Bullock, D.L. DuBois, J. Am, Chem. Soc. 133, 5861–5872 (2011)

    Article  CAS  Google Scholar 

  33. A.H.A. Tinnemans, T.P.M. Koster, D.H.M.W. Thewissen, A. Mackor, Recl. Trav. Chim. Pay. B. 103, 288–295 (1984)

    Article  CAS  Google Scholar 

  34. D.C. Lacy, C.C.L. McCrory, J.C. Peters, Inorg. Chem. 53, 4980–4988 (2014)

    Article  CAS  Google Scholar 

  35. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. (U.S. Department of Energy, 2012)

  36. M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrog. Energy 38, 4901–4934 (2013)

    Article  CAS  Google Scholar 

  37. C. Léger, S. Dementin, P. Bertrand, M. Rousset, B. Guigliarelli, J. Am, Chem. Soc. 126, 12162–12172 (2004)

    Article  CAS  Google Scholar 

  38. G. Goldet, A.F. Wait, J.A. Cracknell, K.A. Vincent, M. Ludwig, O. Lenz, B. Friedrich, F.A. Armstrong, J. Am, Chem. Soc. 130, 11106–11113 (2008)

    Article  CAS  Google Scholar 

  39. G. Goldet, C. Brandmayr, S.T. Stripp, T. Happe, C. Cavazza, J.C. Fontecilla-Camps, F.A. Armstrong, J. Am, Chem. Soc. 131, 14979–14989 (2009)

    Article  CAS  Google Scholar 

  40. H.D. Hoberman, D. Rittenberg, J. Biol. Chem. 147, 211–227 (1943)

    CAS  Google Scholar 

  41. J.N. Butt, M. Filipiak, W.R. Hagen, Eur. J. Biochem. 245, 116–122 (1997)

    Article  CAS  Google Scholar 

  42. K.A. Vincent, J.A. Cracknell, O. Lenz, I. Zebger, B. Friedrich, F.A. Armstrong, Proc. Natl. Acad. Sci. 102, 16951–16954 (2005)

    Article  CAS  Google Scholar 

  43. A. Parkin, C. Cavazza, J.C. Fontecilla-Camps, F.A. Armstrong, J. Am, Chem. Soc. 128, 16808–16815 (2006)

    Article  CAS  Google Scholar 

  44. K.A. Vincent, A. Parkin, F.A. Armstrong, Chem. Rev. 107, 4366–4413 (2007)

    Article  CAS  Google Scholar 

  45. G. Goldet, A.F. Wait, J.A. Cracknell, K.A. Vincent, M. Ludwig, O. Lenz, B.r. Friedrich, F.A. Armstrong, J. Am. Chem. Soc. 130, 11106–11113 (2008)

    Article  CAS  Google Scholar 

  46. A. Bakac, J.H. Espenson, J. Am, Chem. Soc. 106, 5197–5202 (1984)

    Article  CAS  Google Scholar 

  47. S.C. Jackels, K. Farmery, E.K. Barefield, N.J. Rose, D.H. Busch, Inorg. Chem. 11, 2893–2901 (1972)

    Article  CAS  Google Scholar 

  48. A. M. Tait, D. H. Busch, In: Inorg. Synth. ed. By B. E. Douglas (Wiley Interscience, New York, 1978) pp 22-26

  49. E. Uhlig, D. Schneider, Z. Anorg. Allg. Chem. 343, 299–307 (1966)

    Article  Google Scholar 

  50. G. Costa, G. Mestroni, E. de Savorgnani, Inorg. Chim. Acta 3, 323–328 (1969)

    Article  CAS  Google Scholar 

  51. K.M. Long, D.H. Busch, J. Coord. Chem. 4, 113–123 (1974)

    Article  CAS  Google Scholar 

  52. J.L. Karn, D.H. Busch, Nature 211, 160–162 (1966)

    Article  CAS  Google Scholar 

  53. J.L. Karn, D.H. Busch, Inorg. Chem. 8, 1149–1153 (1969)

    Article  CAS  Google Scholar 

  54. A. M. Tait, D. H. Busch, In: Inorg. Synth. ed. By B. E. Douglas (Wiley Interscience, New York, 1978) pp 17-21

  55. L. Fabbrizzi, A. Poggi, Inorg. Chim. Acta 39, 207–210 (1980)

    Article  CAS  Google Scholar 

  56. V.G. Märkl, G.Y. Jin, C. Schoerner, Tetrahedron Lett. 21, 1409–1412 (1980)

    Article  Google Scholar 

  57. L. J. Higham, M. K. Whittlesey, P. T. Wood, Dalton Trans., 4202-4208 (2004)

  58. N.G. Connelly, W.E. Geiger, Chem. Rev. 96, 877–910 (1996)

    Article  CAS  Google Scholar 

  59. Purwanto, R.M. Deshpande, R.V. Chaudhari, H. Delmas, J. Chem. Eng. Data 41, 1414–1417 (1996)

    Article  CAS  Google Scholar 

  60. S. Nakagawa, A. Kudo, M. Azuma, T. Sakata, J. Electroanal. Chem. 308, 339–343 (1991)

    Article  CAS  Google Scholar 

  61. A. Bakac, M.E. Brynildson, J.H. Espenson, Inorg. Chem. 25, 4108–4114 (1986)

    Article  CAS  Google Scholar 

  62. L.A.M. Baxter, A. Bobrowski, A.M. Bond, G.A. Heath, R.L. Paul, R. Mrzljak, J. Zarebski, Anal. Chem. 70, 1312–1323 (1998)

    Article  CAS  Google Scholar 

  63. J. Wenrui, L. Kun, J. Electroanal. Chem. 216, 181–201 (1987)

    Article  Google Scholar 

  64. S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11, 802–807 (2012)

    Article  CAS  Google Scholar 

  65. E. Anxolabéhère-Mallart, C. Costentin, M. Fournier, M. Robert, J. Phys. Chem. C 118, 13377–13381 (2014)

    Article  CAS  Google Scholar 

  66. I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito, I.A. Koppel, J. Org. Chem. 70, 1019–1028 (2005)

    Article  CAS  Google Scholar 

  67. R.R. Gagne, D.M. Ingle, J. Am, Chem. Soc. 102, 1444–1446 (1980)

    Article  CAS  Google Scholar 

  68. R.R. Gagne, D.M. Ingle, Inorg. Chem. 20, 420–425 (1981)

    Article  CAS  Google Scholar 

  69. D. A. Gangi, R. R. Durand, J. Chem. Soc., Chem. Commun., 697-699 (1986)

  70. M.H. Schmidt, G.M. Miskelly, N.S. Lewis, J. Am, Chem. Soc. 112, 3420–3426 (1990)

    Article  CAS  Google Scholar 

  71. E. Fujita, C. Creutz, N. Sutin, D.J. Szalda, J. Am, Chem. Soc. 113, 343–353 (1991)

    Article  CAS  Google Scholar 

  72. A.D. Wilson, K. Fraze, B. Twamley, S.M. Miller, D.L. DuBois, M. Rakowski DuBois, J. Am. Chem. Soc. 130, 1061–1068 (2007)

    Article  CAS  Google Scholar 

  73. I. Kosuke, Acid-base dissociation constants in dipolar aprotic solvents (Blackwell Scientific Publications, Oxford, 1990)

    Google Scholar 

  74. B.J. Fisher, R. Eisenberg, J. Am, Chem. Soc. 102, 7361–7363 (1980)

    Article  CAS  Google Scholar 

  75. P. Du, K. Knowles, R. Eisenberg, J. Am, Chem. Soc. 130, 12576–12577 (2008)

    Article  CAS  Google Scholar 

  76. M. Koper, E. Bouwman, Angew. Chem. Int. Ed. 49, 3723–3725 (2010)

    Article  CAS  Google Scholar 

  77. J.L. Dempsey, J.R. Winkler, H.B. Gray, J. Am, Chem. Soc. 132, 16774–16776 (2010)

    Article  CAS  Google Scholar 

  78. E. Szajna-Fuller, A. Bakac, Eur. J. Inorg. Chem., 2488-2494 (2010)

Download references

Acknowledgments

Financial support for this work was provided by an NSF Center for Chemical Innovation (CHE-0802907). We also thank David C. Lacy and Wesley K. Kramer for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles C. L. McCrory or Jonas C. Peters.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCrory, C.C.L., Szymczak, N.K. & Peters, J.C. Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide. Electrocatalysis 7, 87–96 (2016). https://doi.org/10.1007/s12678-015-0281-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0281-y

Keywords

Navigation