Electrocatalysis

, Volume 7, Issue 1, pp 87–96 | Cite as

Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide

Original Research

Abstract

Molecular cobalt and nickel complexes are among the most promising homogeneous systems for electrocatalytic hydrogen evolution. However, there has been little exploration into the effect of gaseous co-additives such as CO and H2, which may be present in operating hydrogen-evolving or carbon-dioxide reduction systems, on the performance of these molecular electrocatalysts. In this report, we investigate the electrocatalytic activity of six cobalt and nickel complexes supported by tetraazamacrocyclic or diazadiphosphacyclooctane ligands for the reduction of p-toluenesulfonic acid to hydrogen in acetonitrile under inert atmosphere and in the presence of CO and H2. We present an elevated-pressure electrochemical apparatus capable of reaching CO and H2 pressures of ca. 15–520 pounds per square inch (psia) (∼1–35 atm), and we use this apparatus to determine binding constants for CO addition for each catalyst and study the inhibition of the electrocatalysis as a function of CO and H2 pressure. In the case of CO, the extent of catalytic inhibition is correlated to the binding constant, with the cobalt complexes showing a greater degree of catalyst inhibition compared to the nickel complexes. In the case of H2, no complex showed appreciable electrocatalytic inhibition even at H2 pressures of ca. 500 psia.

Keywords

Electrocatalysis Hydrogen evolution Water splitting Solar fuels 

Supplementary material

12678_2015_281_MOESM1_ESM.pdf (260 kb)
ESM 1(PDF 260 kb)

References

  1. 1.
    M. Grätzel, Acc. Chem. Res. 14, 376–384 (1981)CrossRefGoogle Scholar
  2. 2.
    U. Koelle, New J. Chem. 16, 157–169 (1992)Google Scholar
  3. 3.
    A.J. Bard, M.A. Fox, Acc. Chem. Res. 28, 141–145 (1995)CrossRefGoogle Scholar
  4. 4.
    J.A. Turner, Science 305, 972–974 (2004)CrossRefGoogle Scholar
  5. 5.
    V. Artero, M. Fontecave, Coord. Chem. Rev. 249, 1518–1535 (2005)CrossRefGoogle Scholar
  6. 6.
    N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. 103, 15729–15735 (2006)CrossRefGoogle Scholar
  7. 7.
    N.S. Lewis, Science 315, 798–801 (2007)CrossRefGoogle Scholar
  8. 8.
    G.W. Crabtree, M.S. Dresselhaus, MRS Bull. 33, 421–428 (2008)CrossRefGoogle Scholar
  9. 9.
    H.B. Gray, Nat. Chem. 1, 7 (2009)CrossRefGoogle Scholar
  10. 10.
    T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110, 6474–6502 (2010)CrossRefGoogle Scholar
  11. 11.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)CrossRefGoogle Scholar
  12. 12.
    T.-H. Chao, J.H. Espenson, J. Am, Chem. Soc. 100, 129–133 (1978)CrossRefGoogle Scholar
  13. 13.
    P. Connolly, J.H. Espenson, Inorg. Chem. 25, 2684–2688 (1986)CrossRefGoogle Scholar
  14. 14.
    X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters, Chem. Commun., 4723-4725 (2005)Google Scholar
  15. 15.
    M. Razavet, V. Artero, M. Fontecave, Inorg. Chem. 44, 4786–4795 (2005)CrossRefGoogle Scholar
  16. 16.
    X. Hu, B.S. Brunschwig, J.C. Peters, J. Am, Chem. Soc. 129, 8988–8998 (2007)CrossRefGoogle Scholar
  17. 17.
    C. Baffert, V. Artero, M. Fontecave, Inorg. Chem. 46, 1817–1824 (2007)CrossRefGoogle Scholar
  18. 18.
    P.-A. Jacques, V. Artero, J. Pecaut, M. Fontecave, Proc. Natl. Acad. Sci. 106, 20627–20632 (2009)CrossRefGoogle Scholar
  19. 19.
    J.L. Dempsey, B.S. Brunschwig, J.R. Winkler, H.B. Gray, Acc. Chem. Res. 42, 1995–2004 (2009)CrossRefGoogle Scholar
  20. 20.
    V. Fourmond, P.-A. Jacques, M. Fontecave, V. Artero, Inorg. Chem. 49, 10338–10347 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Losse, J.G. Vos, S. Rau, Coord. Chem. Rev. 254, 2492–2504 (2010)CrossRefGoogle Scholar
  22. 22.
    N. Kaeffer, M. Chavarot-Kerlidou, V. Artero, Acc. Chem. Res. (2015)Google Scholar
  23. 23.
    C.C.L. McCrory, C. Uyeda, J.C. Peters, J. Am, Chem. Soc. 134, 3164–3170 (2012)CrossRefGoogle Scholar
  24. 24.
    L.L. Efros, H.H. Thorp, G.W. Brudvig, R.H. Crabtree, Inorg. Chem. 31, 1722–1724 (1992)CrossRefGoogle Scholar
  25. 25.
    C.J. Curtis, A. Miedaner, R. Ciancanelli, W.W. Ellis, B.C. Noll, M. Rakowski DuBois, D.L. DuBois, Inorg. Chem. 42, 216–227 (2002)CrossRefGoogle Scholar
  26. 26.
    A.D. Wilson, R.H. Newell, M.J. McNevin, J.T. Muckerman, M. Rakowski DuBois, D.L. DuBois, J. Am. Chem. Soc. 128, 358–366 (2005)CrossRefGoogle Scholar
  27. 27.
    A.D. Wilson, R.K. Shoemaker, A. Miedaner, J.T. Muckerman, D.L. DuBois, M.R. DuBois, Proc. Natl. Acad. Sci. 104, 6951–6956 (2007)CrossRefGoogle Scholar
  28. 28.
    M.R. DuBois, D.L. DuBois, Comptes Rendus Chimie 11, 805–817 (2008)CrossRefGoogle Scholar
  29. 29.
    M.R. Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974–1982 (2009)CrossRefGoogle Scholar
  30. 30.
    M.R. DuBois, D.L. DuBois, Chem. Soc. Rev. 38, 62–72 (2009)CrossRefGoogle Scholar
  31. 31.
    A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, Science 326, 1384–1387 (2009)CrossRefGoogle Scholar
  32. 32.
    U.J. Kilgore, J.A.S. Roberts, D.H. Pool, A.M. Appel, M.P. Stewart, M.R. DuBois, W.G. Dougherty, W.S. Kassel, R.M. Bullock, D.L. DuBois, J. Am, Chem. Soc. 133, 5861–5872 (2011)CrossRefGoogle Scholar
  33. 33.
    A.H.A. Tinnemans, T.P.M. Koster, D.H.M.W. Thewissen, A. Mackor, Recl. Trav. Chim. Pay. B. 103, 288–295 (1984)CrossRefGoogle Scholar
  34. 34.
    D.C. Lacy, C.C.L. McCrory, J.C. Peters, Inorg. Chem. 53, 4980–4988 (2014)CrossRefGoogle Scholar
  35. 35.
    Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. (U.S. Department of Energy, 2012)Google Scholar
  36. 36.
    M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrog. Energy 38, 4901–4934 (2013)CrossRefGoogle Scholar
  37. 37.
    C. Léger, S. Dementin, P. Bertrand, M. Rousset, B. Guigliarelli, J. Am, Chem. Soc. 126, 12162–12172 (2004)CrossRefGoogle Scholar
  38. 38.
    G. Goldet, A.F. Wait, J.A. Cracknell, K.A. Vincent, M. Ludwig, O. Lenz, B. Friedrich, F.A. Armstrong, J. Am, Chem. Soc. 130, 11106–11113 (2008)CrossRefGoogle Scholar
  39. 39.
    G. Goldet, C. Brandmayr, S.T. Stripp, T. Happe, C. Cavazza, J.C. Fontecilla-Camps, F.A. Armstrong, J. Am, Chem. Soc. 131, 14979–14989 (2009)CrossRefGoogle Scholar
  40. 40.
    H.D. Hoberman, D. Rittenberg, J. Biol. Chem. 147, 211–227 (1943)Google Scholar
  41. 41.
    J.N. Butt, M. Filipiak, W.R. Hagen, Eur. J. Biochem. 245, 116–122 (1997)CrossRefGoogle Scholar
  42. 42.
    K.A. Vincent, J.A. Cracknell, O. Lenz, I. Zebger, B. Friedrich, F.A. Armstrong, Proc. Natl. Acad. Sci. 102, 16951–16954 (2005)CrossRefGoogle Scholar
  43. 43.
    A. Parkin, C. Cavazza, J.C. Fontecilla-Camps, F.A. Armstrong, J. Am, Chem. Soc. 128, 16808–16815 (2006)CrossRefGoogle Scholar
  44. 44.
    K.A. Vincent, A. Parkin, F.A. Armstrong, Chem. Rev. 107, 4366–4413 (2007)CrossRefGoogle Scholar
  45. 45.
    G. Goldet, A.F. Wait, J.A. Cracknell, K.A. Vincent, M. Ludwig, O. Lenz, B.r. Friedrich, F.A. Armstrong, J. Am. Chem. Soc. 130, 11106–11113 (2008)CrossRefGoogle Scholar
  46. 46.
    A. Bakac, J.H. Espenson, J. Am, Chem. Soc. 106, 5197–5202 (1984)CrossRefGoogle Scholar
  47. 47.
    S.C. Jackels, K. Farmery, E.K. Barefield, N.J. Rose, D.H. Busch, Inorg. Chem. 11, 2893–2901 (1972)CrossRefGoogle Scholar
  48. 48.
    A. M. Tait, D. H. Busch, In: Inorg. Synth. ed. By B. E. Douglas (Wiley Interscience, New York, 1978) pp 22-26Google Scholar
  49. 49.
    E. Uhlig, D. Schneider, Z. Anorg. Allg. Chem. 343, 299–307 (1966)CrossRefGoogle Scholar
  50. 50.
    G. Costa, G. Mestroni, E. de Savorgnani, Inorg. Chim. Acta 3, 323–328 (1969)CrossRefGoogle Scholar
  51. 51.
    K.M. Long, D.H. Busch, J. Coord. Chem. 4, 113–123 (1974)CrossRefGoogle Scholar
  52. 52.
    J.L. Karn, D.H. Busch, Nature 211, 160–162 (1966)CrossRefGoogle Scholar
  53. 53.
    J.L. Karn, D.H. Busch, Inorg. Chem. 8, 1149–1153 (1969)CrossRefGoogle Scholar
  54. 54.
    A. M. Tait, D. H. Busch, In: Inorg. Synth. ed. By B. E. Douglas (Wiley Interscience, New York, 1978) pp 17-21Google Scholar
  55. 55.
    L. Fabbrizzi, A. Poggi, Inorg. Chim. Acta 39, 207–210 (1980)CrossRefGoogle Scholar
  56. 56.
    V.G. Märkl, G.Y. Jin, C. Schoerner, Tetrahedron Lett. 21, 1409–1412 (1980)CrossRefGoogle Scholar
  57. 57.
    L. J. Higham, M. K. Whittlesey, P. T. Wood, Dalton Trans., 4202-4208 (2004)Google Scholar
  58. 58.
    N.G. Connelly, W.E. Geiger, Chem. Rev. 96, 877–910 (1996)CrossRefGoogle Scholar
  59. 59.
    Purwanto, R.M. Deshpande, R.V. Chaudhari, H. Delmas, J. Chem. Eng. Data 41, 1414–1417 (1996)CrossRefGoogle Scholar
  60. 60.
    S. Nakagawa, A. Kudo, M. Azuma, T. Sakata, J. Electroanal. Chem. 308, 339–343 (1991)CrossRefGoogle Scholar
  61. 61.
    A. Bakac, M.E. Brynildson, J.H. Espenson, Inorg. Chem. 25, 4108–4114 (1986)CrossRefGoogle Scholar
  62. 62.
    L.A.M. Baxter, A. Bobrowski, A.M. Bond, G.A. Heath, R.L. Paul, R. Mrzljak, J. Zarebski, Anal. Chem. 70, 1312–1323 (1998)CrossRefGoogle Scholar
  63. 63.
    J. Wenrui, L. Kun, J. Electroanal. Chem. 216, 181–201 (1987)CrossRefGoogle Scholar
  64. 64.
    S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11, 802–807 (2012)CrossRefGoogle Scholar
  65. 65.
    E. Anxolabéhère-Mallart, C. Costentin, M. Fournier, M. Robert, J. Phys. Chem. C 118, 13377–13381 (2014)CrossRefGoogle Scholar
  66. 66.
    I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito, I.A. Koppel, J. Org. Chem. 70, 1019–1028 (2005)CrossRefGoogle Scholar
  67. 67.
    R.R. Gagne, D.M. Ingle, J. Am, Chem. Soc. 102, 1444–1446 (1980)CrossRefGoogle Scholar
  68. 68.
    R.R. Gagne, D.M. Ingle, Inorg. Chem. 20, 420–425 (1981)CrossRefGoogle Scholar
  69. 69.
    D. A. Gangi, R. R. Durand, J. Chem. Soc., Chem. Commun., 697-699 (1986)Google Scholar
  70. 70.
    M.H. Schmidt, G.M. Miskelly, N.S. Lewis, J. Am, Chem. Soc. 112, 3420–3426 (1990)CrossRefGoogle Scholar
  71. 71.
    E. Fujita, C. Creutz, N. Sutin, D.J. Szalda, J. Am, Chem. Soc. 113, 343–353 (1991)CrossRefGoogle Scholar
  72. 72.
    A.D. Wilson, K. Fraze, B. Twamley, S.M. Miller, D.L. DuBois, M. Rakowski DuBois, J. Am. Chem. Soc. 130, 1061–1068 (2007)CrossRefGoogle Scholar
  73. 73.
    I. Kosuke, Acid-base dissociation constants in dipolar aprotic solvents (Blackwell Scientific Publications, Oxford, 1990)Google Scholar
  74. 74.
    B.J. Fisher, R. Eisenberg, J. Am, Chem. Soc. 102, 7361–7363 (1980)CrossRefGoogle Scholar
  75. 75.
    P. Du, K. Knowles, R. Eisenberg, J. Am, Chem. Soc. 130, 12576–12577 (2008)CrossRefGoogle Scholar
  76. 76.
    M. Koper, E. Bouwman, Angew. Chem. Int. Ed. 49, 3723–3725 (2010)CrossRefGoogle Scholar
  77. 77.
    J.L. Dempsey, J.R. Winkler, H.B. Gray, J. Am, Chem. Soc. 132, 16774–16776 (2010)CrossRefGoogle Scholar
  78. 78.
    E. Szajna-Fuller, A. Bakac, Eur. J. Inorg. Chem., 2488-2494 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations