, Volume 6, Issue 6, pp 493–497 | Cite as

Overlayer Au-on-W Near-Surface Alloy for the Selective Electrochemical Reduction of CO2 to Methanol: Empirical (DEMS) Corroboration of a Computational (DFT) Prediction

  • Alnald Javier
  • Jack H. Baricuatro
  • Youn-Geun Kim
  • Manuel P. SoriagaEmail author


It is now widely known from extensive studies [1, 2, 3] over the past few decades on the heterogeneous electrochemical reduction of carbon dioxide in aqueous solutions that, across the vast landscape of CO2-reduction electrocatalysts, copper stands alone as the single metal that can deliver a remarkable variety of products; unpredictably, however, the product distribution does not include methanol [1, 2, 3, 4, 5]. The overall energy conversion efficiency of Cu, defined [6] as the ratio of the free energy of the products generated and that consumed in the electrochemical reduction, is only 30 to 40 %, and the overpotential of Cu at benchmark current densities remains unacceptably large, ca. −1.4 V [1, 6]. The diversity of the product distribution also becomes a major hurdle if only one product is coveted. The desire for catalysts that can perform better than Cu, especially in the generation of methanol, a liquid transportation fuel, and feedstock for direct fuel cells, is...


PDMS Reversible Hydrogen Electrode Faradaic Efficiency Host Substrate Differential Electrochemical Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.


  1. 1.
    Y. Hori, in Modern Aspects of Electrochemistry, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer, New York, 2008), p. 89CrossRefGoogle Scholar
  2. 2.
    M. Gattrell, N. Gupta, A.J. Co, Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manage. 48, 1255 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Gattrell, N. Gupta, A.J. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1, 85, 2309 (1989)Google Scholar
  5. 5.
    J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631 (2014)CrossRefGoogle Scholar
  6. 6.
    K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050 (2012)CrossRefGoogle Scholar
  7. 7.
    A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251 (2012)CrossRefGoogle Scholar
  8. 8.
    A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Back, H. Kim, Y. Jung, Selective heterogeneous CO2 electroreduction to methanol. ACS Catal. 5, 965 (2015)CrossRefGoogle Scholar
  10. 10.
    W.J. Durand, A.A. Peterson, F. Studt, F. Abild-Pedersen, J.K. Nørskov, Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605, 1354 (2011)CrossRefGoogle Scholar
  11. 11.
    J.C. Slater, Atomic radii in crystals. J. Chem. Phys. 41, 3199 (1964)CrossRefGoogle Scholar
  12. 12.
    J. Greeley, M. Mavrikakis, Near-surface alloys for hydrogen fuel cell applications. Catal. Today 111, 52 (2006)CrossRefGoogle Scholar
  13. 13.
    A.S. Bandarenka, A.S. Varela, M. Karamad, F. Calle-Vallejo, L. Bech, F.J. Perez-Alonso, J. Rossmeisl, I.E. Stephens, I. Chorkendorf, Design of an active site towards optimal electrocatalysis: overlayers, surface alloys and near-surface alloys of Cu/Pt(111). Angew. Chem. Int. Ed. 51, 11845 (2012)CrossRefGoogle Scholar
  14. 14.
    A.S. Varela, C.G. Schlaup, Z.P. Jovanov, P. Malacrida, S. Horch, I.E.L. Stephens, I. Chorkendorff, CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500 (2013)CrossRefGoogle Scholar
  15. 15.
    M.C. Weidman, D.V. Esposito, I.J. Hsu, J.G. Chen, Electrochemical stability of tungsten and tungsten monocarbide (WC) over wide pH and potential ranges. J. Electrochem. Soc. 157, F179 (2010)CrossRefGoogle Scholar
  16. 16.
    C.G. Fink, F.L. Jones, The electrodeposition of tungsten from aqueous solutions. J. Electrochem. Soc. 59, 461 (1931)CrossRefGoogle Scholar
  17. 17.
    H. Baltruschat, in Interfacial Electrochemistry, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), p. 577Google Scholar
  18. 18.
    H. Baltruschat, Differential electrochemical mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1693 (2004)CrossRefGoogle Scholar
  19. 19.
    Z. Jusys, H. Massong, H. Baltruschat, A new approach for simultaneous DEMS and EQCM: electro-oxidation of adsorbed CO on Pt and Pt-Ru. J. Electrochem. Soc. 146, 1093 (1999)CrossRefGoogle Scholar
  20. 20.
    T. Hartung, H. Baltruschat, Differential electrochemical mass spectrometry using smooth electrodes: adsorption and hydrogen/deuterium exchange reactions of benzene on platinum. Langmuir 6, 953 (1990)CrossRefGoogle Scholar
  21. 21.
    A. Javier, B. Chmielowiec, J. Sanabria-Chinchilla, Y.-G. Kim, J.H. Baricuatro, M.P. Soriaga, A DEMS study of the reduction of CO2, CO, and HCHO pre-adsorbed on Cu electrodes: empirical inferences on the CO2RR mechanism. Electrocatalysis 6, 127 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Kealey, P.J. Haines, Instant Notes in Analytical Chemistry (Garland Science, New York, 2002)Google Scholar
  23. 23.
    S.E. Stein, Mass Spectra, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 1990)Google Scholar
  24. 24.
    P.D. August, J.P. Jones, The epitaxy of gold on (110) tungsten studied by LEED. Surf. Sci. 64, 713 (1977)CrossRefGoogle Scholar
  25. 25.
    T. Giela, K. Freindl, N. Spiridis, J. Korecki, Au(111) films on W(110) studied by STM and LEED. Uniaxial reconstruction, dislocations and Ag nanostructures. Appl. Surf. Sci. 312, 91 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alnald Javier
    • 1
  • Jack H. Baricuatro
    • 1
  • Youn-Geun Kim
    • 1
  • Manuel P. Soriaga
    • 1
    • 2
    Email author
  1. 1.Joint Center for Artificial PhotosynthesisCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations