Skip to main content
Log in

Effect of Addition of Ru and/or Fe in the Stability of PtMo/C Electrocatalysts in Proton Exchange Membrane Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this work, the activity, stability, and CO tolerance of ternary and quaternary electrocatalysts formed by PtMo/C-PtFe/C, PtMo/C-PtRu/C, and PtMo/C-PtRuC-PtFe/C were studied in the anodes of proton exchange membrane fuel cells (PEMFCs). Cyclic voltammetry (CV) was used to study the surface characteristics and stability of the electrocatalysts and polarization curves were used to investigate the performance of PEMFC anodes supplied with pure hydrogen and hydrogen containing 100 ppm CO. Online mass spectrometry (OLMS) and CO stripping experiments were conducted to investigate the CO tolerance mechanism. The PtMo/C-PtRu/C-PtFe/C, PtMo/C-PtFe/C, and PtMo/C-PtRu/C electrocatalysts showed better performance for the oxidation of hydrogen in the presence of hydrogen containing 100 ppm CO as compared to the PtMo/C electrocatalyst. It was found that the partial dissolution of Mo, Ru, and Fe, and their migration/diffusion from the anode to the cathode occur during a CV cycling from 0.1 to 0.7 V vs. RHE at a scan rate of 50 mVs-1 up to total of 5,000 cycles. The results also showed that the stability of PtMo/C-PtRu/C-PtFe/C, PtMo/C-PtFe/C, and PtMo/C-PtRu/C are better than that of PtMo/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Kunze, U. Stimming, Electrochemical versus heat-engine energy technology: a tribute to Wilhelm Ostwald’s visionary statements, Angew. Chem. Int. Ed. Engl. 48, 9230 (2009)

  2. J.J. Baschuk, X. Li, Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Research 713, 695 (2001)

  3. F. Hajbolouri, B. Andreaus, G.G. Scherer, A. Wokaun, CO Tolerance of Commercial Pt and PtRu Gas Diffusion Electrodes in Polymer Electrolyte Fuel Cells, Fuel Cells 4, 160 (2004)

  4. S. Knani, L. Chirchi, S. Baranton, T.W. Napporn, J.M. Léger, A. Ghorbel, A methanol – Tolerant carbon supported Pt–Sn cathode catalysts, Int. J. Hydrogen Energy 39, 9070 (2014)

  5. S. Mukerjee, S.J. Lee, E.A. Ticianelli, J. Mcbreen, B.N. Grgur, N.M. Markovic, Investigation of Enhanced CO Tolerance in Proton Exchange Membrane Fuel Cells by Carbon Supported PtMo Alloy Catalyst, Electrochem. Solid-State Lett. 2, 12 (1999)

  6. S. Ball, A. Hodgkinson, G. Hoogers, S. Maniguet, D. Thompsett, B. Wong, The Proton Exchange Membrane Fuel Cell Performance of a Carbon Supported PtMo Catalyst Operating on Reformate, Electrochem. Solid-State Lett. 5, A31 (2002)

  7. M.T.M. Koper, Electrocatalysis on bimetallic and alloy surfaces, Surf. Sci. 548, 1 (2004)

  8. Z.B. Wang, G.P. Yin, Y.G. Lin, Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell, J. Power Sources 170, 242 (2007)

  9. Z.B. Wang, P.J. Zuo, G.P. Yin,  Investigations of Compositions and Performance of PtRuMo/C Ternary Catalysts for Methanol Electrooxidation, Fuel Cells 9, 106 (2009)

  10. D.C. Papageorgopoulos, M. Keijzer, F.A. De Bruijn, The inclusion of Mo , Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes, Electrochim. Acta 48, 197 (2002)

  11. X. Li, J. Liu, Q. Huang, W. Vogel, D.L. Akins, H. Yang, Effect of heat treatment on stability of gold particle modified carbon supported Pt–Ru anode catalysts for a direct methanol fuel cell, Electrochim. Acta. 56, 278 (2010)

  12. Z.X. Liang, T.S. Zhao, J.B. Xu, Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold, J. Power Sources 185, 166 (2008)

  13. W.C. Choi, J.D. Kim, S.I. Woo, Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry, Catal. Today 74, 235 (2002)

  14. A.S. Aricò, Z. Poltarzewski, H. Kim, A. Morana, N, Giordano, V. Antonucci, Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells, J. Power Sources 55, 159 (1995).

  15. N.P. Lebedeva, G.J.M. Janssen, On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells, Electrochim. Acta 51, 29 (2005)

  16. T.C.M. Nepel, P.P. Lopes, V.A. Paganin, E.A. Ticianelli,  CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: A mass spectrometry investigation, Electrochim. Acta 88, 217 (2013)

  17. E.I. Santiago, G.A. Camara, E.A. Ticianelli, CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method, Electrochim. Acta 48, 3527 (2003)

  18. V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells, J. Appl. Electrochem. 26, 297 (1996)

  19. R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, PEM fuel cell electrocatalyst durability measurements, J. Power Sources. 163, 76 (2006)

  20. S. Zhang, X. Yuan, H. Wang, W. Merida, H. Zhu, J. Shen, A review of accelerated stress tests of MEA durability in PEM fuel cells, Int. J. Hydrogen Energy 34, 388 (2009)

  21. L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell, Electrochim. Acta. 54, 1992 (2009)

  22. B.M.P. Hogarth, T.R. Ralph, Catalysis for Low Temperature Fuel Cells, Platinum Metals Rev. 46, 146 (2002)

  23. A.E. Russell, S.C. Ball, S. Maniguet, D. Thompsett, Unravelling the complexities of CO2 tolerance at PtRu/C and PtMo/C, J. Power Sources. 171, 72 (2007)

  24. S.M.M. Ehteshami, S.H. Chan, A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells, Electrochim. Acta. 93, 334 (2013)

  25. A.C. Garcia, V.A. Paganin, CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC, E.A. Ticianelli, Electrochim. Acta 53, 4309 (2008)

  26. A.N. Valisi, T. Maiyalagan, L. Khotseng, V. Linkov, S. Pasupathi,  Effects of Heat Treatment on the Catalytic Activity and Methanol Tolerance of Carbon-Supported Platinum Alloys, Electrocatalysis, 3, 108 (2012)

  27. P.P. Lopes, K.S. Freitas, E.A. Ticianelli, CO Tolerance of PEMFC Anodes: Mechanisms and Electrode Designs, Electrocatalysis,1, 200 (2010)

  28. Y.J. Leng, X. Wang, I.M. Hsing, Assessment of CO-tolerance for different Pt-alloy anode catalysts in a polymer electrolyte fuel cell using ac impedance spectroscopy, J. Electroanal. Chem. 528, 145 (2002)

  29. S. Mukerjee, R.C. Urian, S.J. Lee, E.A. Ticianelli, J. McBreen, Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in PEMFCs, J. Electrochem. Soc. 151, A1094 (2004)

  30. A. Hassan, V.A. Paganin, A. Carreras, E.A. Ticianelli, Effect of heat treatment on the activity and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton exchange membrane fuel cells, Electrochim. Acta. 142, 307 (2014)

  31. A. Hassan, A. Carreras, J. Trincavelli, E.A. Ticianelli, Molybdenum carbide-based electrocatalysts for CO tolerance in proton exchange membrane fuel cell anodes, J. Power Sources. 247, 712 (2014)

  32. E. Antolini, The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: analysis and solutions, J. Solid State Electrochem. 15, 455 (2011)

Download references

Acknowledgments

The authors would like to thank the Third World Academy of Science (TWAS), Italy, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP-Proc. 2013/16930-7) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Antonio Ticianelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A., Paganin, V.A. & Ticianelli, E.A. Effect of Addition of Ru and/or Fe in the Stability of PtMo/C Electrocatalysts in Proton Exchange Membrane Fuel Cells. Electrocatalysis 6, 512–520 (2015). https://doi.org/10.1007/s12678-015-0269-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0269-7

Keywords

Navigation