Skip to main content
Log in

The Effect of Reducing Agents on the Electronic, Magnetic and Electrocatalytic Properties of Thiol-Capped Pt/Co and Pt/Ni Nanoparticles

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electronic, magnetic and electrocatalytic properties of bimetallic thiol-capped Pt/Co and Pt/Ni nanoparticles were synthesised using two reducing agents, NaBH4 and N2H4. X-ray diffraction analysis of the nanoparticles showed Pt lattice contraction upon the addition of Co or Ni to Pt indicating the formation of an alloy structure, more apparent when N2H4 was used. XPS data analysis revealed Pt metal and Pt(II) (assigned to PtO) and a higher concentration of surface metallic Ni and Co for the NaBH4-reduced samples. Both the NaBH4- and N2H4-reduced catalysts were active for the methanol oxidation reaction (MOR), with the Pt-Co-N2H4 catalyst revealing the highest activity. The N2H4 significantly affected the magnetic properties of Pt/Co and Pt/Ni particles by controlling the morphology and crystalline structure of the nanoparticles. In general, the type of reducing agent affected the final properties of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Teranishi, H. Hori, M. Miyake, J. Phys. Chem. B 101, 5774–5776 (1997)

    Article  CAS  Google Scholar 

  2. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, Electrochim. Acta 47, 3787–3798 (2002)

    Article  CAS  Google Scholar 

  3. C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, in PEM, Fuel Cells Electrocatalysts and Catalysts Layers: Fundamental and Applications, ed. by J. Zhang (Springer, London, 2008), pp. 89–134

    Chapter  Google Scholar 

  4. Y. Lin, X. Gui, Langmuir 21, 11474–11479 (2005)

    Article  CAS  Google Scholar 

  5. K.-W. Park, J.-H. Choi, B.-K. Kwon, S.-A. Lee, Y.-E. Sung, H.-Y. Ha, S.-A. Hong, H. Kim, A. Wieckowski, J. Phys. Chem. B 106, 1869–1877 (2002)

    Article  CAS  Google Scholar 

  6. E. Antolini, J.R.C. Salgado, E.R. Gonzalez, Appl. Catal. B Environ. 63, 137–149 (2006)

    Article  CAS  Google Scholar 

  7. X. Zhang, K.-Y. Tsang, K.-Y. Chan, J. Electroanal. Chem. 573, 1–9 (2004)

    CAS  Google Scholar 

  8. W. Chrzanowski, A. Wieckowski, Langmuir 14, 967–1970 (1998)

    Article  Google Scholar 

  9. J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, Electrochim. Acta 51, 754–763 (2005)

    Article  CAS  Google Scholar 

  10. Z. Peng, H. Yang, Nano Today 4, 143–164 (2009)

    Article  CAS  Google Scholar 

  11. H.J. Huang, D.P. Sun, X. Wang, Chin. Sci. Bull. 57, 3071–3079 (2012)

    Article  CAS  Google Scholar 

  12. J.R.C. Salgado, E. Antolini, E.R. Gonzalez, J. Phys. Chem. B 108, 17767–17774 (2004)

    Article  CAS  Google Scholar 

  13. W. Tu, K. Takai, K. Fukui, A. Miyazaki, T. Enoki, J. Phys. Chem. B 107, 10134–13140 (2003)

    Article  CAS  Google Scholar 

  14. J.B. Goodenough, R. Manoharan, A.K. Shukla, K.V. Ramesh, Chem. Mater. 1, 391–398 (1989)

    Article  CAS  Google Scholar 

  15. M.N. Shaddad, A.M. Al-Mayouf, M.A. Ghanem, M.S. AlHoshan, J.P. Singh, A.A. Al-Suhybani, Int. J. Electrochem. Sci. 8, 2468–2478 (2013)

    CAS  Google Scholar 

  16. D. Wang, Y. Li, Adv. Mater. 23, 1044–1060 (2011)

    Article  CAS  Google Scholar 

  17. N.R. Mathe, M.R. Scriba, N.J. Coville, Int. J. Hydrogen Energy 39, 18871–18881 (2014)

    Article  CAS  Google Scholar 

  18. N.V. Long, M. Ohtaki, M. Nogami, T.D. Hien, Colloid Polym. Sci. 289, 1373–1386 (2011)

    Article  Google Scholar 

  19. Z. Liu, M. Shamsuzzoha, E.T. Ada, W.M. Reichert, D.E. Nikles, J. Power Sources 164, 472–480 (2007)

    Article  CAS  Google Scholar 

  20. J. Cookson, Platin. Met. Rev. 56, 83–98 (2012)

    Article  Google Scholar 

  21. M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 127, 6819–6829 (2005)

    Article  CAS  Google Scholar 

  22. S.C. Zignani, E. Antolini, E.R. Gonzalez, J. Power Sources 191, 344–350 (2009)

    Article  CAS  Google Scholar 

  23. T.C. Deivaraj, W. Chen, J.Y. Lee, J. Mater. Chem. 13, 2555–2560 (2003)

    Article  CAS  Google Scholar 

  24. L. Xiong, A. Manthiram, J. Mater. Chem. 14, 1454–1460 (2004)

    Article  CAS  Google Scholar 

  25. Y. Xu, Y. Yuan, A. Ma, X. Wu, Y. Liu, B. Zhang, ChemPhysChem 13, 2601–2609 (2012)

    Article  CAS  Google Scholar 

  26. D.-J. Guo, H.L. Li, J. Electroanal. Chem. 573, 197–202 (2004)

    CAS  Google Scholar 

  27. A. Kumar, A. Saxena, A. De, R. Shankar, S. Mozumdar, RCS Adv. 3, 5015–5021 (2013)

    CAS  Google Scholar 

  28. D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, S.S. Ray, ACS Appl. Mater. Interfaces 6, 8981–8995 (2014)

    Article  CAS  Google Scholar 

  29. S. Grau, M. Montiel, E. Gomez, E. Valez, Electrochim. Acta 109, 187–194 (2013)

    Article  CAS  Google Scholar 

  30. J. Dai, Y. Du, F. Wang, P. Yang, Physica E 39, 271–276 (2007)

    Article  CAS  Google Scholar 

  31. E. Antolini, Mater. Chem. Phys. 78, 563–573 (2003)

    Article  CAS  Google Scholar 

  32. A.S. Arico, A.K. Shulka, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci. 172, 33–40 (2001)

    Article  CAS  Google Scholar 

  33. C. Yee, M. Scotti, A. Ulman, H. White, M. Rafailovich, J. Sokolov, Langmuir 15, 4314–4316 (1999)

    Article  CAS  Google Scholar 

  34. N. Ikeo, Y. Iijima, N. Niimura, M. Sigematsu, T. Tazawa, S. Matsumoto, K. Kojima, Y. Nagasawa, Handbook of X-ray Photoelectron Spectroscopy (JEOL UK, Welwyn Garden City, 1991)

    Google Scholar 

  35. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 146, 3750 (1999)

    Article  CAS  Google Scholar 

  36. J.E. Castle, Nat. Phys. Sci. 234, 93–95 (1971)

    Article  CAS  Google Scholar 

  37. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717–2730 (2011)

    Article  CAS  Google Scholar 

  38. J. Kang, R. Wang, H. Wang, S. Liao, J. Key, V. Linkov, S. Ji, Materials 6, 2689–2700 (2013)

    Article  CAS  Google Scholar 

  39. T. Ramulifho, K.I. Ozoemena, R.M. Modibedi, C.J. Jafta, M.K. Mathe, Electrochim. Acta 59, 310–320 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the DST/CSIR National Centre for Nanostructured Materials Characterization Facility, the School of Chemistry at the University of Witwatersrand and the University of Free State National Nano Surface Characterization Facility (XPS measurements) for financial and other assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Coville.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathe, N.R., Nkosi, S.S., Motaung, D.E. et al. The Effect of Reducing Agents on the Electronic, Magnetic and Electrocatalytic Properties of Thiol-Capped Pt/Co and Pt/Ni Nanoparticles. Electrocatalysis 6, 274–285 (2015). https://doi.org/10.1007/s12678-014-0241-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0241-y

Keywords

Navigation