Skip to main content
Log in

Effect of Platinum Nanoparticle Loading on Oxygen Reduction at a Pt Nanocluster-Activated Microporous–Mesoporous Carbon Support

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Very high surface area carbon-supported Pt nanoparticle catalysts have been applied to the oxygen reduction reaction in alkaline solution. The distribution effect of deposited Pt nanoparticles onto the carbon support on the oxygen reduction reaction kinetics has been established by comparing the various carbon-supported Pt (20 and 60 wt% metal) catalysts. The various Pt catalysts were prepared by using a sodium borohydride reduction method. All the catalysts showed a face-centered cubic crystal structure as determined by X-ray diffraction method; the average platinum particle sizes were ∼4.2, ∼4.8, ∼5.4, and ∼27.2 nm for 20 wt% Pt–C(Mo2C), 60 wt% Pt–C(Mo2C)-I, 60 wt% Pt–Vulcan XC72, and 60 wt% Pt–C(Mo2C)-II catalysts, respectively. The X-ray photoelectron spectra for all the catalysts indicated that most of the platinum nanoparticles have an oxidation state of 0. The low-temperature N2 sorption, time-of-flight mass spectrometry, scanning electron microscopy, and transmission electron microscopy experiments have been carried out to characterize the structure of prepared materials. The cyclic voltammetry and rotating disk electrode techniques were used to study the oxygen electroreduction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R.R. Adzic, Nano Lett. 12, 6266 (2012)

    Article  CAS  Google Scholar 

  2. Z.Q. Tian, S.P. Jiang, Y.M. Liang, P.K. Shen, J. Phys. Chem. B 110, 5343 (2006)

    Article  CAS  Google Scholar 

  3. J. Perez, E.R. Gonzalez, E.A. Ticianelli, Electrochim. Acta 44(8–9), 1329 (1998)

    Article  CAS  Google Scholar 

  4. F. Şen, G. Gökaǧaç, J. Phys. Chem. C 111, 5715 (2007)

    Article  Google Scholar 

  5. L. Genies, R. Faure, R. Durand, Electrochim. Acta 44, 1317 (1998)

    Article  CAS  Google Scholar 

  6. Y.H. Cho, H.S. Park, Y.H. Cho, D.S. Jung, H.Y. Park, Y.E. Sung, J. Power Sources 172, 89 (2007)

    Article  CAS  Google Scholar 

  7. J. Prabhuram, T.S. Zhao, C.W. Wong, J.W. Guo, J. Power Sources 134, 1 (2004)

    Article  CAS  Google Scholar 

  8. M. Gara, E. Laborda, P. Holdway, A. Crossley, C.J.V. Jones, R.G. Compton, Phys. Chem. Chem. Phys. 15, 19487 (2013)

    Article  CAS  Google Scholar 

  9. K. Ward, M. Gara, N.S. Lawrence, R.S. Hartshorne, R.G. Compton, J. Electroanal. Chem. 695, 1 (2013)

    Article  CAS  Google Scholar 

  10. J. Masa, C. Batchelor-McAuley, W. Schuhmann, R.G. Compton, Nano Res. 7(1), 71 (2014)

    Article  CAS  Google Scholar 

  11. L. Jiang, A. Hsu, D. Chu, R. Chen, J. Electroanal. Chem. 629, 87 (2009)

    Article  CAS  Google Scholar 

  12. R. Chen, H. Li, D. Chu, G. Wang, J. Phys. Chem. C 113, 20689 (2009)

    Article  CAS  Google Scholar 

  13. L. Genies, Y. Bultel, R. Faure, R. Durand, Electrochim. Acta 48, 3879 (2003)

    Article  CAS  Google Scholar 

  14. J. Qiao, L. Xu, L. Ding, P. Shi, L. Zhang, R. Baker, J. Zhang, Int. J. Electrochem. Sci. 8, 1189 (2013)

    CAS  Google Scholar 

  15. M. Gara, R.G. Compton, New J. Chem. 35, 2647 (2011)

    Article  CAS  Google Scholar 

  16. E. Härk, R. Jäger, E. Lust, ECS Trans. 59(1), 137 (2014)

    Article  Google Scholar 

  17. R. Jäger, E. Härk, P.E. Kasatkin, E. Lust, J. Electrochem. Soc. 161(9), F861 (2014)

    Article  Google Scholar 

  18. I. Morcos, E. Yeager, Electrochim. Acta 15, 953 (1970)

    Article  CAS  Google Scholar 

  19. R. Rizo, E. Herrero, J.M. Feliu, Phys. Chem. Chem. Phys. 15, 15416 (2013)

    Article  CAS  Google Scholar 

  20. J. Guo, A. Hsu, D. Chu, R. Chen, J. Phys. Chem. C 114, 4324 (2010)

    Article  CAS  Google Scholar 

  21. S. Sharma, B.G. Pollet, J. Power Sources 208, 96 (2012)

    Article  CAS  Google Scholar 

  22. E. Antolini, E.R. Gonzalez, J. Power Sources 195, 3431 (2010)

    Article  CAS  Google Scholar 

  23. E. Yeager, Electrochim. Acta 29, 1527 (1984)

    Article  CAS  Google Scholar 

  24. G.S. Chai, S.B. Yoon, J.-S. Yu, J.-H. Choi, Y.-E. Sung, J. Phys. Chem. B 108, 7074 (2004)

    Article  CAS  Google Scholar 

  25. T.J. Schmidt, V. Stamenkovic, P.N. Ross Jr., N.M. Markovic, Phys. Chem. Chem. Phys. 5, 400 (2003)

    Article  CAS  Google Scholar 

  26. J. Zhang (ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications (Springer, London, 2008), pp. 89–134

    Book  Google Scholar 

  27. F. Jaouen, J. Phys. Chem. C 113, 15433 (2009)

    Article  CAS  Google Scholar 

  28. E. Lust, E. Härk, J. Nerut, K. Vaarmets, Electrochim. Acta 101, 130 (2013)

    Article  CAS  Google Scholar 

  29. E. Härk, J. Nerut, K. Vaarmets, I. Tallo, H. Kurig, J. Eskusson, K. Kontturi, E. Lust, J. Electroanal. Chem. 689, 176 (2013)

    Article  Google Scholar 

  30. E. Härk, S. Sepp, P. Valk, K. Vaarmets, J. Nerut, R. Jäger, E. Lust, ECS Trans. 45(21), 1 (2013)

    Article  Google Scholar 

  31. R. Jäger, P.E. Kasatkin, E. Härk, E. Lust, Electrochem. Comm. 35, 97 (2013)

    Article  Google Scholar 

  32. M.P. Hogarth, J. Munk, A.K. Shukla, A.J. Hamnett, J. Appl. Electrochem. 24, 85 (1994)

    Article  CAS  Google Scholar 

  33. T.R. Ralph, G.A. Hards, J.E. Keating, S.A. Campbell, D.P. Wilkinson, M. Davis, J. St-Pierre, M.C. Johnson, J. Electrochem. Soc. 144, 3845 (1997)

    Article  CAS  Google Scholar 

  34. F. Gloaguen, J.M. Leger, C. Lamy, J. Appl. Electrochem. 27, 1052 (1997)

    Article  CAS  Google Scholar 

  35. A. Jänes, T. Thomberg, H. Kurig, E. Lust, Carbon 47, 23 (2009)

    Article  Google Scholar 

  36. G. Álvarez, F. Alcaide, O. Miguel, L. Calvillo, M.J. Lázaro, J.J. Quintana, J.C. Calderón, E. Pastor, I. Esparbé, J. Solid State Electrochem. 14, 1027 (2010)

    Article  Google Scholar 

  37. E. Yeager, J. Mol. Catal. 38, 5 (1986)

    Article  CAS  Google Scholar 

  38. K. Kinoshita, Electrochemical Oxygen Technology (Wiley, New York, 1992), pp. 5–448

    Google Scholar 

  39. R. Adžić in: J. Lipkowski, P.N. Ross (Eds.), Electrocatalysis, Wiley-VCH, New York (1988) 197–242

  40. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B 56, 9 (2005)

    Article  CAS  Google Scholar 

  41. B. Wang, J. Power Sources 152, 1 (2005)

    Article  CAS  Google Scholar 

  42. A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  43. R.E. Davis, G.L. Horvath, C.W. Tobias, Electrochim. Acta 12, 287 (1967)

    Article  CAS  Google Scholar 

  44. R. Giorgi, P. Ascarelli, V. Contini, S. Turtù, Appl. Surf. Sci. 178, 149 (2001)

    Article  CAS  Google Scholar 

  45. NIST X-ray Photoelectron Spectroscopy Database®, NIST Standard Reference Database 20, Version 4.1, http://srdata.nist.gov/xps/

  46. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  47. P.I. Ravikovitch, A.V. Neimark, Colloids. Surf. A: Physicochem. Eng. Aspects 11, 187–188 (2001)

    Google Scholar 

  48. E. Higuchi, H. Uchida, M. Watanabe, J. Electroanal. Chem. 583, 69 (2005)

    Article  CAS  Google Scholar 

  49. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  CAS  Google Scholar 

  50. M. Gara, K.R. Ward, R.G. Compton, Nanoscale 5, 7304 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Estonian target research project IUT20-13, the Estonian Centre of Excellence in Science Project TK117T “High-technology Materials for Sustainable Development,” the Estonian Energy Technology Program project SLOKT10209T, and the Materials Technology project SLOKT12180T. The authors thank Mrs. N Doan and Dr. T Kallio for doing the TEM images (Aalto University); Dr. H Kurig for performing the low-temperature N2 sorption experiments; I Tallo for performing the high-temperature chlorination synthesis of C(Mo2C); Mr. J Aruväli and Prof. K Kirsimäe for performing the XRD measurements and analysis of data; L Mattisen for performing the XPS measurements; Mr. R Kanarbik for performing the SEM measurements; and Dr. P Möller for performing the TOF-SIMS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lust.

Additional information

E. Härk, R. Jäger, and E. Lust are ISE and ECS members.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Härk, E., Jäger, R. & Lust, E. Effect of Platinum Nanoparticle Loading on Oxygen Reduction at a Pt Nanocluster-Activated Microporous–Mesoporous Carbon Support. Electrocatalysis 6, 242–254 (2015). https://doi.org/10.1007/s12678-014-0238-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0238-6

Keywords

Navigation